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Abstract—A latent factor (LF) model can implement efficient 
analysis for a high-dimensional and sparse (HiDS) matrix from 
recommender systems (RSs). However, an LF model’s represen-
tation learning ability to a targeted HiDS matrix is heavily pro-
portional to its known data density. Unfortunately, an HiDS ma-
trix’s known data are limited due to users’ activity limitations in 
RSs. Motivated by this observation, this paper proposes a Predic-
tion-sampling-based Multilayer-structured Latent Factor 
(PMLF) model. Following the principle of Deep Forest [1], PMLF 
implements a loosely-connected multilayered LF structure, where 
each layer generates synthetic ratings to enrich the input for the 
next layer. Such an injection process is carefully monitored 
through a random sampling process and nonlinear activations to 
avoid overfitting. Thus, PMLF’s representation learning ability to 
an HiDS matrix is significantly enhanced owing to the carefully 
injected estimates and its generalized multilayer-structure. Ex-
perimental results on four HiDS matrices from industrial RSs 
indicate that compared with six state-of-the-art LF-based and 
deep neural networks-based models, PMLF well balances the 
prediction accuracy and computational efficiency, making it sat-
isfy demands of fast and accurate industrial applications. 

Keywords—Deep forest, High-dimensional and sparse data, 
Missing data estimation, Latent factor model, Deep learning, 
Generalized multilayer-structure, Recommender system. 

I. INTRODUCTION 

A user-item rating matrix is commonly adopted to describe 
users’ preferences on items in a recommender system (RS) [2, 
3]. Since the number of items can be very large in an industrial 
RS like Amazon [4], a user can only touch a small part of all the 
items. As a result, such a matrix is usually high-dimensional 
and sparse (HiDS) [2, 3]. Hence, how to accurately and effi-
ciently represent an HiDS matrix is a thorny issue. [5-7].  

Up to now, a latent factor (LF) model is one of the most 
popular and successful approaches to address this issue [2, 3, 8]. 
Given an HiDS matrix, an LF model represents it by training a 
low-rank approximation based on its known data only [8]. 
Evidently, an LF model’s representation learning ability to a 
targeted HiDS matrix is heavily proportional to its known data 
density. Fig. 1 gives an example to illustrate this. 
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Fig. 1. An example: the known ratings of an HiDS matrix is extremely im-
portant for training an LF model. 

Example. To illustrate a real case, we select the MovieLens 
1M 1 as the example HiDS matrix. Its known data are randomly 
divided into five parts, where one part is the testing data and the 
other four parts are training data. Under the same conditions, 
we respectively choose one part (20%), two parts (40%), three 
parts (60%), and four parts (80%) from training data to train 
four different LF models first and then test their prediction 
accuracy (root mean squared error, RMSE) on the testing data. 
Fig.1 shows that when the percentage of training data increases 
from 20% to 80%, the achieved RMSE is reduced from 0.9245 
to 0.8547, i.e, the prediction accuracy is improved by 7.55%. 

Naturally, when we are asked to improve an LF model’s 
representation learning ability, our first thought is to collect 
more known data for a targeted HiDS matrix. Such a thought, 
however, is not always reasonable in the area of RS because 
real rating collection is time-consuming, expensive, and 
sometimes impossible due to users’ activity limitations [2, 9]. 
Alternatively, can we generate synthetic ratings instead of real 
ratings to enrich the input for an LF model? 

As a matter of fact, synthetic ratings can also be generated by 
an LF model itself. However, such ratings are deduced from 
observed ratings in an HiDS matrix, making it risky to adopt 
them as the input for an LF model. On the other hand, as 
proposed by Zhou et al. [1, 10], Deep Forest can enhance a 
model gradually with a generalized multilayer-structure, where 
each layer is an individual model but it employs the features 
extracted from its preceding layer to enrich the information in 
its input. From this point of view, it becomes possible to 
generate synthetic ratings to enrich the input for an LF model 
1https://grouplens.org/datasets/movielens/1m/ 
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via such an appropriately-designed multilayer-structure.  
To do so, this paper proposes a Prediction-sampling-based 

Multilayer-structured Latent Factor (PMLF) model, which can 
accurately and efficiently predict the missing data of an HiDS 
matrix from RSs based on its known ones only. Its main idea is 
to generate synthetic ratings to enrich the input for an LF model 
layer by layer via an appropriately-designed  multilayer-struct- 
ure, which can enhance an LF model’s representation learning 
ability. Main contributions of this work include:  
a) We first propose to generate synthetic ratings as the input for 

an LF model to boost its representation learning ability via 
an appropriately-designed multilayer-structure. 

b) We propose a PMLF model that can accurately and effi-
ciently predict the missing data of an HiDS matrix from RSs. 

c) We conduct extensive experiments on four HiDS matrices 
generated by industrial RSs to evaluate the PMLF model.  
To the authors’ best knowledge, this is the first study that 

implements a generalized multilayer-structure for an LF model 
through prediction-sampling. Note that in [11], a deep LF (DLF) 
model is proposed via aggregating a series of individual LF 
models. However, a PMLF model differs from a DLF model 
vastly because: 
a) PMLF improves an LF model by enriching its input while 

DLF by enhancing its generalization ability.  
b) PMLF’s multilayer-structure is connected by predic-

tion-sampling while DLF just sequentially connects its each 
layer.  

c) PMLF achieves much higher prediction accuracy for the 
missing data of an HiDS matrix than DLF does. 

II. RELATED WORK 

Up to now, many sophisticated approaches have been 
proposed to build an improved LF-based model, including a 
bias-based one [8], a dual-regularization-based one [12], a 
probabilistic one [13], a joint recommendation one [14], a 
neighborhood-and-location integrated one [15], a graph regu-
larized one [16], a confidence-driven one [17], etc. Although 
these approaches are different from each other in model design, 
none of them considers improving an LF model by constructing 
a deep structure. Recently, a deep LF (DLF) model is proposed 
[11]. It sequentially aggregates a series of individual LF models 
to enhance their generalization ability. While following the 
principle of Deep Forest [1], PMLF constructs its 
multilayer-structure by prediction-sampling, aiming at enrich-
ing an LF model’s input. As a result, a PMLF model possesses a 
better representation learning ability to an HiDS matrix than a 
DLF model does. 

Since deep learning has powerful representation learning 
ability [18, 19], many recent studies have explored deep neural 
networks (DNNs) to build various RSs [20-24]. Representative 
models include an autoencoder-based one [24], a denoising 
autoencoder-based one [25], a stacked autoencoder-based one 
[26], a hybrid autoencoder-based one [27], a collaborative 
denoising autoencoder-based one [28], a recurrent neural 
network-based one [29], a neural collaborative filtering-based 
one [20], a hybrid deep structure-based one [30], a deep matrix 
factorization with neural network-based one [21], a multitask 
learning-oriented one [31], a neural factorization-based one 
[32], an attentional factorization-based one [33], a deep coop-

erative neural network model [34], and a convolutional matrix 
factorization model [35]. 

Note that these DNNs-based models have the limit caused by 
the defects of DNNs [1], i.e., they take complete data rather 
than known data of an HiDS matrix as input, resulting in 
extremely high computational cost [11]. For example, Epinion 
dataset (adopted in this paper) has a rating density of 0.02% 
only, where 13,668,321 ratings scatter in 755,760 rows and 
120,492 columns [36]. If we take complete data as input, more 
than 91 billion entries need to be processed, which is greatly 
difficult in real applications. While a PMLF model constructs 
its multilayer-structure based on an LF model rather than the 
DNNs. It trains only on the known data of an HiDS matrix, 
thereby achieving highly computational efficiency.  

III. PRELIMINARIES 

A. Symbols and Notations 
TABLE I. SYMBOLS AND NOTATIONS. 

Symbol Explanation 

U Targeted user set.  
u A user of U. 
I Targeted item set.  
i An item of I.

Y Targeted user-item rating matrix with |U| rows and |I| columns, 
which is an HiDS matrix.  

yu,i 
Y’s element at uth row and ith column denoting the rating expe-
rienced by a user u U on an item i I. 

SK Known ratings set of Y. 
SU Unknown ratings set of Y. 
d Latent factor dimension. 

W Latent factor matrix of a latent factor model for users with |U| 
rows and d columns. 

wu,. uth row-vector of W. 

Z Latent factor matrix of a latent factor model for items with |I| 
rows and d columns. 

zi,. ith row-vector of Z. 
Y’s rank-d approximation built on SK with d min(|U|, |I|). 

  ’s element at uth row and ith column denoting prediction for yu,i.

Ω A |U|×|I| binary index matrix, in which Ωu,i is its element at uth 
row and ith column.  

N The maximun number of layers of PMLF. 
n Denoting the nth layer of PMLF, n {1, 2, …, N}. 

Wn 
Latent factor matrix of PMLF for users at nth layer with |U| rows 
and d columns. 

wn 
u,. uth row-vector of Wn. 

Zn 
Latent factor matrix of PMLF for items at nth layer with |I| rows 
and d columns. 

zn 
i,. ith row-vector of Zn. 

 Y’s rank-d approximation achieved by PMLF at nth layer.  
  ’s element at uth row and ith column denoting prediction for yu,i.
  The output of the nonlinear activation function as  is the input. 

  An HiDS matrix consists of  and some randomly selected 
ratings from . It is the input of n+1th layer of PMLF.   

  ’s element at uth row and ith column.  
  Known ratings set of . 

 The ratio of selecting prediction ratings from . 
λ The regularization parameter of l2-norm-based regularization. 

(W, Z) Objective function with respect to W and Z. 
  Instant loss on a single rating at nth layer. 

Tmax Maximum training round count for each layer of PMLF. 
 Learning rate.  
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Fig. 2. The structure and processing flow of a PMLF model. 

B. Latent Factor Model 
Definition 1 (An HiDS matrix). Given a user set U and an 

item set I, Y is a |U|×|I| matrix in which each element yu,i de-
notes user u’s (u U) preference on item i (i I). SK and SU de-
note known and unknown rating sets of Y respectively. Y is an 
HiDS matrix with U and I being large and |SK| |SU|. 

Definition 2 (A latent factor model). Given an HiDS matrix 
Y and the latent factor dimension d, a latent factor model is to 
train two corresponding latent factor matrices W|U|×d and Z|I|×d to 
achieve Y’s rank-d approximation  by minimizing the errors 
between Y and  on SK, where  is given by =WZT and its each 
element  is the prediction for Y’s each corresponding ele-
ment yu,i.  

From definition 2, an objective function that minimizes the 
errors between Y and  is highly important. A Euclidean dis-
tance-based objective is a common choice [8]: 

( ) ( )2 2

, 

1 1ˆargmin ( ,  ) ,
2 2

ε Τ= Ω − = Ω −
FFW Z

W Z Y Y Y WZ       (1) 

where ||·||F denotes the Frobenius norm of a matrix,  denotes 
the Hadamard product (the component-wise multiplication), 
and Ω is a |U|×|I| binary index matrix given by 

,
, .

1    if   is observed
0   otherwiseΩ =u i

u iy
                      (2) 

To avoid overfitting on SK, regularization term like L2-norm 
needs to be incorporated into (1) [2]:  

( ) ( )2 2 2

, 

1argmin ( ,  ) ,
2 2 F FFW Z

W Z Y WZ W Zλε Τ= Ω − + +    (3) 

where (3) can be minimized by an optimization algorithm, such 
as stochastic gradient descent (SGD). 

IV. PROPOSED PMLF MODEL  
A. Structure of PMLF 

Following the generalized multilayer-structure of a Deep 
Forest proposed by Zhou et al. [1] and the principle that more 
known data of an HiDS matrix can improve an LF model’s 
representation learning ability as illustrated in Fig.1, we design 
the PMLF model, as shown in Fig.2. PMLF sequentially con-
nects N LF models and N-1 nonlinear activation functions to 
construct a prediction-sampling-based multilayer-structure. A 
PMLF model works as follows:  
a) Input: inputting SK into layer 1 as the initial inputs; 
b) Layer 1: training LF matrices W1 and Z1 based on SK only to 

obtain , the training rules are analyzed in Section IV.B; 

c) Layer 1: randomly selecting some prediction ratings from  
(the prediction data for the unknown data of Y) to input into a 
nonlinear activation function;   

d) Layer 1: combining the outputs of the activation function 
and Y to form a new HiDS matrix , which is taken as the 
input of layer 2;  

e) Layer n: training LF matrices Wn and Zn based on the known 
ratings of  only to obtain , the training rules are ana-
lyzed in Section IV.C, where n {2, …, N}. 

f) Layer n: randomly selecting some prediction ratings from  
(the prediction data for the unknown data of Y) to input into a 
nonlinear activation function, where n {2, …, N};   

g) Layer n: combining the outputs of the activation function 
and  to form a new HiDS matrix , which is taken as the 
input of the next layer, where n {2, …, N};  

h) Output: repeating steps e–g until last layer N to obtain , 
then output . 

B. Training Layer 1 of PMLF with SGD 
To efficiently train layer 1 of PMLF, we expand (3) into the 

following single LF-dependent form:  

( )
1 1 , K

2 2
2

1 1
1 1 , , , 1 1

, 1

1arg min ( ,  ) .
2 2τ τ

τ

λε
∈ =

= − + +
u i

F F

d

u i u i
W Z y S

W Z y w z W Z (4) 

Then, we consider the instant of (4) on a single rating yu,i SK: 

( ) ( )
2

2 21 1 1 1 1
, , , , , ,

1 1 1

1 .
2 2τ τ τ τ

τ τ τ

λε
= = =

= − + +
d d d

u i u i u i u iy w z w z   (5) 

Next, we employ SGD to optimize (5). To do so, we move 
the LFs involved in (5) along the opposite direction against the 
stochastic gradient of (5) with respect to each single LF: 

{ }

1
,1 1

, , 1
,

, 1
,1 1

, , 1
,

on , 1,2,..., : .
  

τ τ
τ

τ τ
τ

ε
η

τ
ε

η

∂
← −

∂
∀ ∈

∂
← −

∂

u i
u u

u
u i

u i
i i

i

w w
w

y d

z z
z

                    (6) 

Further, we extend (6) to obtain the training rules of layer 1 of a 
PMLF model as follows:   

{ },

1 1 1 1 1 1
, , , , , , ,

1

1 1 1 1 1 1
, , , , , , ,

1

on , 1,2,..., :

,
.

  

τ τ τ τ τ τ
τ

τ τ τ τ τ τ
τ

τ

η ηλ

η ηλ

=

=

∀ ∈

← + − −

← + − −

u i

d

u u i u i u i u

d

i i u u i u i i

y d

w w z y w z w

z z w y w z z

        (7) 
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After each known rating in SK is trained with (7), W1 and Z1 
are extracted and can be used to predict the missing data of Y by 
computing  as follows:   

1 1 1
ˆ .Y W Z Τ=                                         (8) 

Next, we randomly select some prediction data from  to input 
into a nonlinear activation function as follows: 

  
( )

( )

1
,

1
,

ˆ 1
min , min

ˆ1 1 1
, 1 , max , max

1
,

ˆ+1/ 1     

ˆˆ ˆ:  / 1       

ˆ                          .

u i

u i

y
u i

y
u i u i u i

u i

y e if y y

y Y y y e if y y

y otherswise

−

−

+ <

∈ = +∀ >         (9) 

Note that if  <ymin or  >ymax, these prediction data are 
evidently not correct. Thus, (9) has the physical meaning that it 
can reset the extremely unreasonable prediction ratings of . 
Finally, the outputs of (9) plus the SK forms a new HiDS matrix 

, which is the input for the layer 2 of a PMLF model.  

C. Training Layer n of PMLF with SGD 
To explain how to train the other multilayered layers of 

PMLF, we give the training process of layer n as a general 
description, where n {2,…, N}. Note that the synthetic HiDS 
matrix , which comes from the layer n-1, is the input for 
training the layer n. Similar to (4), training the layer n is also 
formulated as the following single LF-dependent form: 

( )
1 1

,

2 2
2

1
, , ,

, 1

1arg min ( ,  ) ,
2 2τ τ

τ

λε
− −

−

=∈

= − + +
nn n u

n
Ki

F F

d
n n n

n n u i u
Z S

i n n
W y

W Z y w z W Z

   (10) 
On a single rating , the instant of (10) is: 

( ) ( )
2

2 21
, , , , , ,

1 1 1

1 .
2 2τ τ τ τ

τ τ τ

λε −

= = =
= − + +

d d d
n n n n n n
u i u i u i u iy w z w z (11) 

To solve (11) with SGD, we obtain the training rules of layer 
n as follows:   

{ }1
,

1
, , , , , , ,

1

1
, , , , , , ,

1

on , 1,2,..., :

.
  

τ τ τ τ τ τ
τ

τ τ τ τ τ τ
τ

τ

η ηλ

η ηλ

−

−

=

−

=
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← + − −

← + − −

n
u i

d
n n n n n n n
u u i u i u i u

d
n n n n n n n
i i u u i u i i

y d

w w z y w z w

z z w y w z z

        (12) 

Based on (12), Wn and Zn can be obtained. Then, we employ 
them to predict the missing ratings of  by . After 
that, we randomly select some prediction data from  to input 
into a nonlinear activation function (13), aiming at resetting the 
extremely unreasonable prediction ratings of :  

( )
( )

,

,

ˆ
min , min

ˆ
, , max , max

,

ˆ+1/ 1    ,  

ˆˆ ˆ:  / 1      ,

ˆ                        .

n
u i

n
u i

y n
u i

yn n n
u i n u i u i

n
u i

y e if y y

y Y y y e if y y

y otherswise

−

−∀

+ <

∈ = + >        (13) 

Then, we combine the outputs of (13) and the  to form , 
which is the input for layer n+1. 

The above operations are a general training process for any 
layer of PMLF except for layer 1. Following these operations, 
we sequentially train the multilayered layers of PMLF layer by 
layer until to the last layer N. Finally, we obtain the  by 

, which is the final predictions of PMLF for the missing 
ratings of Y.  

D. Method of Selecting Prediction Ratings from  
How to select prediction ratings from  at PMLF’s each 

layer n is crucial for PMLF. The specific method is a) randomly 
selecting an unknown entry between two known entries in each 
row of  as the blank entry, b) selecting the entry that is the 
prediction for the blank entry from  to input into the activa-
tion function, and c) combining the outputs of the activation 
function and  to form . To illustrate this method, an 
example is given in Fig. 3. 

n̂Y1−nY

? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ?
? ? ? ? ?
? ? ? ? ?

? ? ? ?
? ? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

Activation 
function

nY

Known ratings of 1−nY

1−nYPrediction ratings based on       at layer n
Output of the activation function 

 

Fig. 3. An example of how to select prediction ratings from  at PMLF’s each 
layer n.  

E. Algorithm Design and Analysis 
Based on the above analyses, we design Algorithm PMLF. 

For PMLF with only one layer, it actually degenerates an 
original LF model. Hence, layer 1 of PMLF has the computa-
tional complexity of O(Tmax×|SK|×d) [11]. For layer 2, some ad-
ditional prediction ratings selected from  are used as the input. 
Supposing the selecting ratio from  is , where =(| |-|SK|)/|SK|. 
Then, the computational complexity of layer 2 is 
O(Tmax×|SK|×d×(1+ )). Similarly for layer n, supposing the se-
lecting ratio from  is also , where =(| |-| |)/| |, the 
computational complexity of layer n is O(Tmax×|SK|×d× (1+ )n-1). 
Finally, supposing PMLF consists of N layers, its computa-
tional complexity is O(Tmax×|SK|×d×(1+ )N/ ), which has higher 
computational complexity than an LF model.  

Evidently, the extra computing burden of PMLF is caused by 
its multilayer-structure and decided by its maximum number of 
layers and ratio of selecting prediction ratings from . How-
ever, the computational complexity of PMLF is acceptable in 
practice because: a) an LF model, which is the basic component 
of PMLF, is highly efficient in addressing an HiDS matrix [2, 
37-38]; b) PMLF can be parallelized to train because it belongs 
to the vanilla SGD-based matrix factorization [39-40], which 
can greatly reduce its computational cost. More discussions 
regarding parallel PMLF are provided in Section VI.B. 
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ALGORITHM PMLF 

Steps Input: SK Output:  

1 initializing d, λ, , Tmax; W1, Z1 
2 while t  Tmax && not converge  
3   for yu,i SK 
4   for =1 to d 
5       computing w1 

u,k according to (7) 
6       computing z1 

i,k according to (7) 
7     end for 
8   end for 
9   t=t+1 

10 end while  
11 randomly selecting some prediction ratings from ,  
12 inputting the selected ratings into (9) 
13 combining the outputs of (9) and SK to form  
14 for n=2 to N 
15   initializing Wn, and Zn 
16   while t  Tmax && not converge  
17     for  
18     for =1 to d 
19         computing wn 

u,  according to (12) 
20         computing zn 

i,  according to (12) 
21     end for 
22     end for 
23     t=t+1 
24   end while  
25   randomly selecting some prediction ratings from ,  
26   inputting the selected ratings into (13) 
27   combining the outputs of (13) and  to form  
28 end for 

 

V. EXPERIMENTS 

A. General Settings 
Datasets. Four benchmark datasets are real HiDS datasets 

generated by industrial applications [36, 41]. Table II summa-
rizes their properties. Dating is collected by an online dating 
website LibimSeTi [42], Epinion is collected by Trustlet web-
site [36], Flixter is collected by the Flixter website [43], and 
MovieLens is collected by the MovieLens system [44].  

TABLE II. PROPERTIES OF ALL THE DATASETS. 

No. Name |U| |I| |YK| Density*

D1 Dating 135,359 168,791 17,359,346 0.08% 
D2 Epinion 755,760 120,492 13,668,321 0.02% 
D3 Flixter 147,612 48,794 8,196,077 0.11% 
D4 MovieLens 6040 3706 1,000,209 4.47% 
*Density denotes the percentage of the known ratings in the dataset. 

 
Evaluation Metrics. Rating prediction is a common 

recommendation task [19]. It aims to predict the missing data of 
a given HiDS user-item matrix. To evaluate rating prediction 
accuracy, mean absolute error (MAE) and root mean squared 
error (RMSE) are widely adopted as the evaluation metrics [19]. 
They are calculated as follows: 
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where Γ denotes the testing set and |·|abs denotes the absolute 
value of a given number. Besides, we also evaluate ranking 
prediction performance. Normalized discounted cumulative 
gain (NDCG) is usually adopted as the evaluation metrics [19, 
45, 46]. NDCG is calculated as follows:  
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where yu,k denotes the kth known rating regarding a user u in Γ 
in descending order, u,k denotes the kth prediction rating cor-
responding to each item in Γ in descending order, and K is a 
cutoff parameter determining how many items are considered 
in the ranked list. Finally, to evaluate computational efficiency, 
we test the CPU running time.  

Baselines. We compare our proposed PMLF model with six 
related state-of-the-art models, including three LF-based mod-
els (BLF [8], FNLF [47], and DLF [11]) and three DNNs-based 
models ( AutoRec [24], NRT [31], and DCCR [27]). Table III 
gives brief descriptions of all the involved models.  

TABLE III. DESCRIPTIONS OF ALL THE INVOLVED MODELS. 

Model Description 

BLF 
The basic LF model proposed in 2009 [8] and has been exten-
sively used in RSs.  

FNLF 
A fast non-negative LF model based on generalized momentum 
proposed in 2018 [47]. It improves a common non-negative LF 
model by considering the momentum effects.   

DLF 
A deep LF model proposed in 2019 [11]. Its deep structure plays 
a role like regularization. 

AutoRec
A DNNs-based model proposed in 2015 [24]. It is the representa-
tive model in DNNs-based RSs.  

NRT 
A DNNs-based model proposed in 2017 [31]. It is a multitask 
learning framework developed by combining multilayer percep-
tron and recurrent neural networks. 

DCCR 
A DNNs-based model proposed in 2019 [27]. It improves AutoRec 
by using two different neural networks. 

PMLF 
The proposed prediction-sampling-based multilayer-structured 
latent factor model in this paper. 

 

B. Experimental Designs 
For each dataset, its 80% know ratings are used as the 

training dataset and the remaining 20% ones are used as the 
testing dataset. The training process of a tested model termi-
nates if the number of consumed iterations reaches a preset 
threshold (500) or the error difference between two consecutive 
iterations is smaller than 10-6. All the experiments are run on a 
computer server that has a 2.1 GHz E52620 CPU with 32 cores 
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and a 256 GB RAM. In the next experiments, we aim at an-
swering the following research questions (RQs): 
RQ. 1. Does the proposed PMLF model outperform 

state-of-the-art LF-based and DNNs-based models? 
RQ. 2. Is PMLF’s prediction-sampling-based multilayer-struc- 

ture helpful for improving an LF model’s prediction 
accuracy? 

RQ. 3. How does the latent factor dimension d influence the 
performance of a PMLF model? 

C. Performance Comparison (RQ.1) 
We adopt the following model settings: a) setting latent 

factor dimension d=10 for the three LF-based models (BLF, 
FNLF, and DLF) and the proposed PMLF model, b) for the 
three DNNs-based models (AutoRec, NRT, and DCCR), set-
ting their number of layers and dimension of hidden units�
according�to�their�original�papers,�c) on rating prediction, 
tuning the other hyper-parameters of all the models on one fold 
of each dataset to achieve the best performance of each model 
and then adopting the same values on the remaining four folds, 
and d) on ranking prediction, the other hyper-parameters of all 
the models are set same as that in rating prediction. 

1) Comparison of rating prediction accuracy 
Table IV presents the comparison results. To better under-

stand these comparison results, we conduct statistical analysis. 
First, the win/loss counts of PMLF versus other models are 
summarized in the second-to-last row of Table IV. Second, we 
conduct the Friedman test [48] because it is effective in vali-
dating the performance of multiple models on multiple datasets. 
The Friedman statistical result is recorded in the last row of 
Table IV, where it accepts the hypothesis that these comparison 
models have significant differences with a significance level of 
0.05. From Table IV, we find that: a) PMLF evidently wins the 
three LF-based models on RMSE/MAE comparison, b) com-
pared with the three DNNs-based models, PMLF achieves a 
lower RMSE/MAE in most cases, and c) PMLF achieves the 
lowest F-rank value. Therefore, these findings verify that 
PMLF achieves the highest rating prediction accuracy among 
all the models. 

In addition, to check whether PMLF has significantly better 
prediction accuracy than each single model, we also conduct 
the Wilcoxon signed-ranks test [48] on the comparison results 
of Table IV. Wilcoxon signed-ranks test has three indica-
tors—R+, R-, and p-value. The larger R+ value denotes a higher 
prediction accuracy and the p-value denotes the significance 
level. Table V records the results. First, we see that PMLF has a 
significantly higher rating prediction accuracy than the three 
LF-based models. Second, when comparing with the three 
DNNs-based models, the hypothesis is not accepted. One rea-
son is that their hidden units (which is like the latent factor 
dimension d of an LF-based model, AutoRec=500, NRT=400, 
and DCCR=500) is much larger than PMLF’s d (set as 10). 
However, PMLF still achieves a much larger R+ than the three 
DNNs-based models do, which means that PMLF has slightly 
higher rating prediction accuracy than them.  

2) Comparison of ranking prediction accuracy 
Table VI records the detailed comparison results, where the 

statistical analyses of win/loss counts and Friedman test are also 
presented. Besides, we also conduct the Wilcoxon signed-ranks 

test on the comparison results of Table VI and the results are 
recorded in Table VII. From Tables VI and VII, we find that: a) 
PMLF has the highest ranking prediction accuracy among all 
the models because it has the highest F-rank value, b) PMLF 
has significantly higher ranking prediction accuracy than BLF, 
DLF, and AutoRec, c) PMLF has a slightly better ranking pre-
diction accuracy than FNLF and DCCR, and d) PMLF and 
NRT have the comparable ranking prediction accuracy.   

TABLE IV. THE COMPARISON RESULTS ON RATING PREDICTION ACCURACY, 
INCLUDING WIN/LOSS COUNTS AND FRIEDMAN TEST, WHERE • INDICATES PMLF 
HAS A LOWER RMSE/MAE THAN THE COMPARISON MODELS. 

Dataset Metric BLF FNLF DLF AutoRec NRT DCCR PMLF

D1 RMSE 2.0616 2.1028  2.0502   2.2863   2.3033 2.2712  2.0271 
MAE 1.4269  1.4964  1.4258   1.8429   1.7948 1.8358  1.4093 

D2 RMSE 1.2679  1.2566  1.2579   1.2297  1.2268 1.2298  1.2416 
MAE 0.5960  0.5801  0.5958   0.5943   0.5899 0.5960  0.5880 

D3 RMSE 1.0706 1.0895 1.0712  1.0603 1.0609 1.0630 1.0652
MAE 0.7431 0.7555 0.7465  0.7325 0.7332 0.7331 0.7422

D4 RMSE 0.9168  0.9278  0.9160   0.9187   0.9176 0.9169  0.9138 
MAE 0.7238  0.7271  0.7234   0.7285   0.7273 0.7265  0.7212 

Statis- 
tic 

Win/Loss 8/0 7/1 8/0 5/3 5/3 5/3 — 
F-rank* 4.44 5.00 3.88 4.25 4.00 4.19 2.25 

* A lower F-rank value indicates a higher rating prediction accuracy. 

TABLE V. RESULTS OF THE WILCOXON SIGNED-RANKS TEST ON RMSE/MAE 
OF TABLES IV. 

Comparison R+ R- p-value* 
PMLF vs. BLF 36 0 0.0039  
PMLF vs. FNLF 34 2 0.0117  
PMLF vs. DLF 36 0 0.0039  
PMLF vs. AutoRec 23.5 12.5 0.2422  
PMLF vs. NRT 22 14 0.3203  
PMLF vs. DCCR 24 12 0.2305  

* The accepted hypotheses with a significance level of 0.05 are highlighted. 

TABLE VI. THE COMPARISON RESULTS ON RANKING PREDICTION ACCURACY, 
INCLUDING WIN/LOSS COUNTS AND FRIEDMAN TEST, WHERE • INDICATES PMLF 
HAS A HIGHER NDCG THAN THE COMPARISON MODELS. 

Dataset Metric BLF FNLF DLF AutoRec NRT DCCR PMLF

D1 NDCG@5 0.9161 0.9212 0.9162   0.9163  0.9227 0.9166 0.9172 
NDCG@10 0.8995 0.9033 0.9005  0.8987  0.9030 0.8994 0.9002 

D2 NDCG@5 0.9481 0.9465   0.9493  0.9438  0.9469 0.9453 0.9474 
NDCG@10 0.9601 0.9589   0.9609  0.9560  0.9589 0.9549 0.9596 

D3 NDCG@5 0.8553 0.8583   0.8536   0.8612  0.8625 0.8628 0.8605 
NDCG@10 0.8713 0.8747   0.8697   0.8775  0.8785 0.8798 0.8767 

D4 NDCG@5 0.7512 0.7457   0.7517   0.7566  0.7503 0.7536 0.7617 
NDCG@10 0.7480 0.7452   0.7496   0.7484  0.7476 0.7493 0.7566 

Statis- 
tic 

Win/Loss 6/2 6/2 5/3 6/2 4/4 6/2 — 
F-rank* 3.25 3.44 4.13 3.38 4.56 4.13 5.13 

* A higher F-rank value indicates a higher ranking prediction accuracy. 

TABLE VII. RESULTS OF THE WILCOXON SIGNED-RANKS TEST ON NDCG OF 
TABLE VI. 

Comparison R+ R- p-value* 
PMLF vs. BLF 32.5 3.5 0.0234  
PMLF vs. FNLF 25 11 0.1914  
PMLF vs. DLF 28 8 0.0938  
PMLF vs. AutoRec 33 3 0.0195  
PMLF vs. NRT 18 18 0.5273  
PMLF vs. DCCR 27 9 0.1250  

* The accepted hypotheses with a significance level of 0.1 are highlighted. 
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3) Comparison of computational efficiency 
Fig. 4 records the CPU running time of each model tested on 

all the datasets. First, we see that PMLF costs more CPU run-
ning time than the three LF-based models. One reason is that 
PMLF needs to train some extra synthetic ratings due to its 
prediction-sampling-based multilayer-structure. Second, we 
find that PMLF costs much less CPU running time than the 
three DNNs-based models, especially on the large-scale da-
tasets, like D1–D3. The main reason is that PMLF only takes 
the known ratings of an HiDS matrix as input while the three 
DNNs-based models take the complete data to do that.  

Fig. 4. The comparison CPU running time of involved models, where * denotes 
that D1–D3 is left tick label and  denotes that D4 is right tick label. 

D. Influence of Multilayer-structure in PMLF (RQ.2) 
In this set of experiments, we test PMLF’s rating prediction 

accuracy as its layer count increases. The hyper-parameters are 
set as λ=0.01, =0.001, and d=10, uniformly. Figs. 5 and 6 
present the training process of PMLF at different layers, where 
we have the following important findings: 

a) PMLF’s prediction-sampling-based multilayer-structure 
does not affect its each basic LF model’s convergence. At 
each layer, RMSE/MAE keeps decreasing with more train-
ing rounds until reaching convergence,  

b) PMLF’s prediction-sampling-based multilayer-structure 
helps improve an LF model’s prediction accuracy. As can be 
seen, PMLF has a lower RMSE/MAE as the layer count in-
creases, 

c) Note that, with only one layer, PMLF degenerates into an 
original LF model, i.e., BLF. Comparing with BLF, the 
RMSE and MAE reduced by PMLF on D1–4 are 2.63% and 
2.38%, 2.70% and 2.20%, 1.64% and 0.99%, and 0.86% and 
0.59%, respectively, and  

d )PMLF’s prediction accuracy is not always higher with a 
deeper layer. For example, the MAE on D4 decreases first 
and then increases as the layer becomes deeper. One possible 
reason is that when the layer count grows over its optimal 
threshold, some unreliable prediction-sampling ratings are 
input into the next layer. 

E. Influence of Latent Factor Dimension d (RQ.3) 
This set of experiments increases d from 10 to 320 for PMLF. 

The hyper-parameters are set as λ=0.01 and =0.001, uniformly. 
Figs. 7 and 8 record the results, where we find that the larger d 
makes PMLF achieve a higher rating prediction accuracy, 
which means that PMLF has a better representation learning 
ability with a larger d. Such a finding is consistent with the prior 
studies [8, 37]. Note that in Section V.C, we only set d=10 for 
PMLF to compare with the DNNs-based models. Based on the 
analyses of this section, we know that PMLF with a larger d 
(such as 40) actually can achieve a better comparison results 
when comparing with AutoRec, NRT, and DCCR.  

 
 

    
                                 (a) D1                                                   (b) D2                                                     (c) D3                                                    (d) D4 

Fig. 5. The training process of PMLF regarding RMSE at different layers on all the datasets. 

 
                                 (a) D1                                                   (b) D2                                                     (c) D3                                                    (d) D4 

Fig. 6. The training process of PMLF regarding MAE at different layers on all the datasets. 
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                                    (a) D1                                                     (b) D2                                                      (c) D3                                                       (d) D4 

Fig. 7. The lowest RMSE of PMLF at different layers as d increases on all the datasets. 

   
                                    (a) D1                                                     (b) D2                                                      (c) D3                                                       (d) D4 

Fig. 8. The lowest MAE of PMLF at different layers as d increases on all the datasets. 

   
                                    (a) D1                                                     (b) D2                                                    (c) D3                                                     (d) D4 

Fig. 9. The lowest RMSE of PMLF and its simpler version at different layers on all the datasets. 

 
                                    (a) D1                                                     (b) D2                                                    (c) D3                                                     (d) D4 

Fig. 10. The lowest MAE of PMLF and its simpler version at different layers on all the datasets. 

        
                                    (a) D1                                                     (b) D2                                                    (c) D3                                                     (d) D4 

Fig. 11. The speedup results of parallel PMLF as the number of threads increases on all the different datasets.
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VI. DISCUSSION 

A. Why can PMLF Improve an LF Model’s Representation 
Learning Ability? 
There are some other cascade multilayered model designs [1, 

49, 50]. They have a common principle that the output of the 
preceding model is used as the additional input for the next 
model to help training. Similarly, each layer of PMLF receives 
not only the targeted matrix Y, but also some predic-
tion-sampling data come from its preceding layer. Such pre-
diction-sampling data are generated by fully training the de-
sired LF matrices to well approximate the input ratings. They 
contain some valuable high-order information of the targeted 
matrix Y. Next, we conduct experiments to verify the above 
analyses. To this end, we construct a simpler version of PMLF, 
i.e., using random data (same value range as the original ratings) 
instead of prediction sampling data as the additional input for 
each layer of PMLF. Then, we compare PMLF with its simpler 
version and their hyper-parameters are set the same. Figs. 9 and 
10 record the comparison results, where we see that as the layer 
count increases, PMLF has the lower RMSE/MAE in general 
while its simpler version has contrary results. These results 
verify that the prediction-sampling data are the helpful addi-
tional input for an LF mode while the random data are not in 
such a multilayer-structured PMLF.  

B. How to Improve PMLF’s Computational Efficiency? 
According to [39-40], the vanilla SGD-based matrix factor-

ization for RSs can be efficiently implemented in parallel. On 
this basis, we can greatly improve PMLF’s computational ef-
ficiency through parallelization. For example, we develop 
PMLF to a parallel version according to Hogwild! [40]. Spe-
cifically, at each layer, we randomly sample the training ratings 
first and then employ them to respectively update the LF ma-
trices of each layer through different threads simultaneously. 
Please refer to [40] for details. Then, we test the speedup of 
parallel PMLF with different numbers of threads. Fig. 11 
records the results, where we see that PMLF’s computational 
efficiency has been significantly improved with a nearly linear 
speedup as the number of threads increases. Note that there are 
no significant differences in prediction accuracy between 
original PMLF and its parallel version.  

C. How to Make PMLF’s Layer Count Self-adaptive? 
Similar to [1], PMLF’s layer count can also be determined 

adaptively when training on a specific dataset through the fol-
lowing operations. First, we split the training set into two parts 
i.e., growing set and validation set. Second, we employ the 
growing set to train a deeper cascade layer first and then the 
validation set to evaluate its performance. If a deeper layer does 
not improve PMLF’s performance, the current layer count is 
adopted. Finally, we retrain PMLF on the whole training set.  

 

VII. CONCLUSION 

This paper proposes a Prediction-sampling-based 
Multilayer-structured Latent Factor (PMLF) model to 
accurately and efficiently representing a high-dimensional and 
sparse (HiDS) user-item rating matrix from recommender 

systems (RSs). Similar to the principle of Deep Forest [1], a 
PMLF model is to generate synthetic ratings to enrich the input 
for a latent factor (LF) model layer by layer via an 
appropriately-designed generalized multilayer-structure, which 
can greatly enhance an LF model’s representation learning 
ability. Extensive experiments on four HiDS matrices gener-
ated by industrial RSs are conducted to evaluate the proposed 
PMLF model. The results verify that, when predicting the 
missing data of an HiDS matrix, i) PMLF achieves much higher 
prediction accuracy than three state-of-the-art LF-based models 
do, and ii) PMLF has not only slightly higher prediction 
accuracy but also much higher computational efficiency than 
three state-of-the-art deep neural networks (DNNs)-based 
models. Besides, we also show that PMLF’s computational 
efficiency can be greatly improved through parallelization. In 
the future, we plan to make PMLF’s hyper-parameters 
self-adaptive based on intelligent algorithm [51-52].  
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