

Robust Latent Factor Analysis for Precise
Representation of High-Dimensional

and Sparse Data
Di Wu, Member, IEEE and Xin Luo, Senior Member, IEEE

 Abstract—High-dimensional and sparse (HiDS) matrices
commonly arise in various industrial applications, e.g.,
recommender systems (RSs), social networks, and wireless sensor
networks. Since they contain rich information, how to accurately
represent them is of great significance. A latent factor (LF) model
is one of the most popular and successful ways to address this
issue. Current LF models mostly adopt L2-norm-oriented Loss to
represent an HiDS matrix, i.e., they sum the errors between
observed data and predicted ones with L2-norm. Yet L2-norm is
sensitive to outlier data. Unfortunately, outlier data usually exist
in such matrices. For example, an HiDS matrix from RSs
commonly contains many outlier ratings due to some
heedless/malicious users. To address this issue, this work proposes
a smooth L1-norm-oriented latent factor (SL-LF) model. Its main
idea is to adopt smooth L1-norm rather than L2-norm to form its
Loss, making it have both strong robustness and high accuracy in
predicting the missing data of an HiDS matrix. Experimental
results on eight HiDS matrices generated by industrial
applications verify that the proposed SL-LF model not only is
robust to the outlier data but also has significantly higher
prediction accuracy than state-of-the-art models when they are
used to predict the missing data of HiDS matrices.
 Index Terms—High-dimensional and sparse matrix, L1-norm, L2-
norm, latent factor model , recommender system, smooth L1-norm.

I. Introduction

IN this era of information explosion, people are frequently
inundated by big data from various industrial applications

[1]–[5], e.g., recommender systems (RSs), social networks,
and wireless sensor networks. Among these applications,
matrices are commonly adopted to represent the relationship
between two types of entities. For example, a user-item rating

matrix is frequently seen in recommender systems (RSs)
[6]–[9], where each row indicates a specific user, each column
indicates a specific item (e.g., movie, electronic product, and
music), and each entry indicates a user’s preference on an
item.

In big data-related applications like Amazon [10], since the
relation among numerous entities is unlikely to be fully
observed in practice, matrices from these applications are
usually high-dimensional and sparse (HiDS) [7], [11]. Yet
these HiDS matrices contain rich formation regarding various
valuable knowledge, e.g., user’s potential preferences on
items in RSs. Hence, how to precisely extract useful
information from an HiDS matrix becomes a hot yet thorny
issue in industrial applications.

Up to now, various approaches and models are proposed to
address this issue [6]–[9]. Among them, a latent factor (LF)
model, which originates from matrix factorization techniques
[11], [12], is becoming increasingly popular due to its high
accuracy and scalability in industrial applications [13], [14].
Given an HiDS matrix, an LF model represents it by training
two low-dimensional LF matrices based on its observed data
only [13], [15]. To model an accurate LF model, how to
design its Loss function is very crucial, where Loss denotes
the sum of errors between observed data (ground truths) and
predicted ones computed by a specific norm on an HiDS
matrix [13], [14].

Currently, most LF models adopt L2-norm-oriented Loss
[12]–[18] while few ones adopt L1-norm-oriented Loss [19].
Fig. 1(a) illustrates the differences between L1-norm-oriented
and L2-norm-oriented Losses [19]–[21] where Error denotes
the errors between predicted results and ground truths: 1) the
former is less sensitive to Error than the latter, thereby
enhancing the robustness of a resultant model [19], [21], [22],
and 2) the latter is smoother than the former when the absolute
value of Error is small (less than 1), thereby enhancing the
stability of a resultant model [23].

Hence, although an LF model with L2-norm-oriented Loss
can achieve a steady and accurate prediction for the missing
data of an HiDS matrix space [23], its robustness cannot be
guaranteed when such a matrix is mixed with outlier data.
Unfortunately, outlier data usually exist in an HiDS matrix.
For example, an HiDS matrix from RSs commonly contains
many outlier ratings due to some heedless/malicious users
(e.g., a user rates an item randomly in the feedback or
badmouths a specific item) [24], [25].

Manuscript received September 4, 2020; revised October 31, 2020;

accepted November 17, 2020. This work was supported in part by the
National Natural Science Foundation of China (61702475, 61772493,
61902370, 62002337), in part by the Natural Science Foundation of
Chongqing, China (cstc2019jcyj-msxmX0578, cstc2019jcyjjqX0013), in part
by the Chinese Academy of Sciences “Light of West China” Program, in part
by the Pioneer Hundred Talents Program of Chinese Academy of Sciences,
and by Technology Innovation and Application Development Project of
Chongqing, China (cstc2019jscx-fxydX0027). Recommended by Associate
Editor Shangce Gao. (Corresponding author: Xin Luo.)

Citation: D. Wu and X. Luo, “Robust latent factor analysis for precise
representation of high-dimensional and sparse data,” IEEE/CAA J. Autom.
Sinica, vol. 8, no. 4, pp. 796–805, Apr. 2021.

The authors are with the Chongqing Key Laboratory of Big Data and
Intelligent Computing, Chongqing Institute of Green and Intelligent
Technology, Chinese Academy of Sciences, Chongqing 400714, and also
with the Chongqing School, University of Chinese Academy of Sciences,
Chongqing 400714, China (e-mail: wudi@cigit.ac.cn; luoxin21@cigit.ac.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2020.1003533

796 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 4, APRIL 2021

http://ieeexplore.ieee.org
https://doi.org/10.1109/JAS.2020.1003533

On the other hand, although an LF model with L1-norm-
oriented Loss has intrinsic robustness, its solution space for
predicting the missing data of an HiDS matrix is multimodal.
The reason is that L1-norm-oriented Loss is not smooth when
the predicted results and ground truths are close to each other.
As a result, an LF model with L1-norm-oriented Loss may be
stacked by some “bad” solutions, making it unable to
guarantee high prediction accuracy.

From the aforementioned discussions, we see that both L1
and L2-norm-oriented Losses are not the best choice for
modeling an LF model. Then, do we have an alternative one?
This work aims to answer it. Fig. 1(b) illustrates the smooth
L1-norm-oriented Loss, where we observe that Loss not only is
robust to Error but also has a smooth gradient when the
absolute value of Error is smaller than 1. Motivated by this
observation, we propose a smooth L1-norm-oriented latent
factor (SL-LF) model. Its main idea is to adopt smooth L1-
norm to form its Loss, making it have both strong robustness
and high accuracy in predicting the missing data of an HiDS
matrix.

16
L1-norm L2-norm

12

8

4

−4 −2 0
Error

(a) L1-norm and L2-norm

L
o
s
s

2 4
0

Smooth L1-norm
16

12

8

4

−4 −2 0
Error

(b) Smooth L1-norm

L
o
s
s

2 4
0

Fig. 1. The relationship between Loss and Error with different norms to
solve a regression problem.

Main contributions of this work include:
1) Proposing an SL-LF model with strong robustness and

high accuracy in predicting the missing data of an HiDS
matrix.

2) Performing a suite of theoretical analyses and algorithm
designs for the proposed SL-LF model.

3) Conducting extensive empirical studies on eight HiDS
matrices generated by industrial applications to evaluate the
proposed model and other state-of-the-art ones.

To the author’s best knowledge, this is the first study to
employ smooth L1-norm to implement an LF model for
predicting the missing data of an HiDS matrix. Experimental
results demonstrate that compared with state-of-the-art
models, SL-LF achieves significant accuracy gain when
predicting missing data of an HiDS matrix. Its computational
efficiency is also highly competitive when compared with the
most efficient LF models.

The rest of the paper is organized as follows. Section II
states preliminaries. Section III presents an SL-LF model.
Section IV reveals experimental results. Section V discusses
related work. Finally, Section VI concludes this paper.

II. Preliminaries

In this section, we give the related definitions and
descriptions of an HiDS matrix and an LF model. According

to [9], [16], [18], they are defined as follows.

<<

Definition 1 (HiDS matrix): Given a set U and a set I, Z
denotes a |U| × |I| matrix where each element zu,i denotes the
relation between element u (u∈U) and element i (i∈I). ZK and
ZU respectively denote the known and the unknown entities
sets of Z. Z is an HiDS matrix with |ZK| |ZU|.

Built on an HiDS matrix, an LF model is defined as follows
[13], [14], [26].

Ẑ
Ẑ << Ẑ

Ẑ Ẑ ẑ

Definition 2 (Latent factor model): Given Z, f, a |U| × f
latent factor matrix X, and an |I| × f latent factor matrix Y, a
latent factor model is to search for X and Y to achieve Z’s
rank-f approximation by minimizing the errors between Z
and on ZK with the condition of f min{|U|, |I|}, where
is given by = XYT. ’s each element u,i is the prediction for
each zu,i.

Ẑ
To implement an LF model, a Loss function needs to be

carefully designed to measure the difference between Z and
[14]. Currently, L2-norm is most commonly used [7], [17]:

argmin
X,Y

ε(X,Y) =
∥∥∥∥Ω⊙ (

Z− Ẑ
)∥∥∥∥2

L2
=

∥∥∥∥Ω⊙ (
Z−XYT

)∥∥∥∥2

L2
(1)

∥·∥L2where denotes the L2-norm of a matrix, ⊙ denotes the
Hadamard product (the component-wise multiplication), and
Ω is a |U| × |I| binary index matrix:

Ωu,i =

 1, if zu,i is known

0, otherwise.
(2)

As analyzed in [14], an LF model is easy to overfit on ZK of
an HiDS matrix by minimizing (1). Tikhonov regularization is
thus adopted to prevent such an overfitting problem [9], [16],
[18]. Then, with it, an LF model has the following objective
function:

argmin
X,Y

ε(X,Y) =
∥∥∥∥Ω⊙ (

Z−XYT
)∥∥∥∥2

L2
+λ

(
∥X∥2L2

+ ∥Y∥2L2

)
(3)

where λ is a regularization controlling parameter. Next, we
present an SL-LF model.

III. Smooth L1-Norm-Oriented Latent Factor Model

A. Objective Formulation
As L2-norm is sensitive to outlier data [20], an LF model

with a Loss function of (1) lacks robustness. On the other
hand, an LF model with an L1-norm-oriented Loss function
cannot guarantee a high prediction accuracy because its
solution space is not smooth. As shown in Fig. 1(b), smooth
L1-norm has the merits of both robustness and smoothness.
Yet it remains open whether an LF model with a smooth L1-
norm-oriented Loss function can achieve a highly robust and
accurate prediction for the missing data of an HiDS matrix. To
answer it, we first define the smooth L1-norm of a matrix.

∥R∥S L1

Definition 3 (Smooth L1-norm of a matrix): Given a matrix
R with M rows and N columns, symbol denotes the
smooth L1-norm of R.

∥R∥S L1 =

M∑
m=1

N∑
n=1

v, v=


√

r2
m,n, if |rmn| ≤ 1
|rmn|, if |rmn| > 1

(4)

where rm,n denotes R’s element at m-th row and n-th column,

WU AND LUO: ROBUST LATENT FACTOR ANALYSIS FOR PRECISE REPRESENTATION OF HIGH-DIMENSIONAL AND SPARSE DATA 797

m∈{1, 2, …, M}, n∈{1, 2, …, N}.
Then, to implement an SL-LF model, we design the

following objective function:

argmin
X,Y

ε(X,Y) =
∥∥∥∥Ω⊙ (

Z−XYT
)∥∥∥∥2

S L1
+λ

(
∥X∥2L2

+ ∥Y∥2L2

)
(5)

∥·∥S L1where denotes the smooth L1-norm of a matrix. As Z
contains numerous unknown data, (5) should be expanded into
the following data density-oriented form for high efficiency in
both storage and computation [13], [15]:

argmin
X,Y

ε(X,Y) =

∑
(u,i)∈ZK

(
∆u,i

)2
+λ

∑
(u,i)∈ZK

 f∑
k=1

x2
u,k +

f∑
k=1

y2
i,k


if

∣∣∣∣∆u,i

∣∣∣∣ ≤ 1

∑
(u,i)∈ZK

∣∣∣∆u,i

∣∣∣+λ ∑
(u,i)∈ZK

 f∑
k=1

x2
u,k +

f∑
k=1

y2
i,k


if

∣∣∣∣∆u,i

∣∣∣∣ > 1

(6)

ẑ

where xu,k denotes the specific entity at the u-th row and k-th
column in X, yi,k denotes the specific entity at the i-th row and
k-th column in Y, and Δu,i is the prediction error between zu,i
and u,i calculated as

∆u,i = zu,i− ẑu,i = zu,i−
f∑

k=1

xu,kyi,k. (7)

With such an objective function of (6), we next check
whether an SL-LF model can achieve a highly robust and
accurate prediction for the missing data of an HiDS matrix.

B. Model Optimization
As analyzed in [13], [15], a stochastic gradient descent

(SGD) algorithm has the advantages of fast convergence and
ease of implementation in optimizing a bilinear objective.
Hence, we employ it to minimize (6) by training desired X and
Y. First, we consider the instant loss of (6) on a single entity
zu,i:

εu,i =



(
∆u,i

)2
+λ

 f∑
k=1

x2
u,k +

f∑
k=1

y2
i,k

, if
∣∣∣∣∆u,i

∣∣∣∣ ≤ 1

∣∣∣∣∆u,i

∣∣∣∣+λ f∑
k=1

x2
u,k +

f∑
k=1

y2
i,k

, if
∣∣∣∣∆u,i

∣∣∣∣ > 1.

(8)

To solve (8) with SGD, we need to respectively move each
single LF xu,k and yi,k along the opposite of the stochastic
gradient of (8). To do so, we make
 

xu,k = xu,k −η
∂εu,i

∂xu,k

yi,k = yi,k −η
∂εu,i

∂yi,k

∀k ∈ {1,2, ..., f }

(9)

where η is the learning rate. Since (8) has the absolute
deviation term of |Δu,i|, there are a total of three situations for
(8) in computing (9) as follows:

εu,i =



(
∆u,i

)2
+λ

 f∑
k=1

x2
u,k +

f∑
k=1

y2
i,k

, if
∣∣∣∣∆u,i

∣∣∣∣ ≤ 1

∆u,i+λ

 f∑
k=1

x2
u,k +

f∑
k=1

y2
i,k

, if ∆u,i > 1

−∆u,i+λ

 f∑
k=1

x2
u,k +

f∑
k=1

y2
i,k

, if ∆u,i < −1.

(10)

Then, by incorporating (10) into (9), we have the training
rules for each single LF xu,k and yi,k respectively on a single
entity zu,i as follows:

For zu,i ∀k ∈ {1,2, ..., f } :


xu,k = xu,k +ηyi,k∆u,i−ηλxu,k,

yi,k = yi,k +ηxu,k∆u,i−ηλyi,k,
if

∣∣∣∣∆u,i

∣∣∣∣ ≤ 1
xu,k = xu,k +ηyi,k −ηλxu,k,

yi,k = yi,k +ηxu,k −ηλyi,k,
if ∆u,i > 1

xu,k = xu,k −ηyi,k −ηλxu,k,

yi,k = yi,k −ηxu,k −ηλyi,k,
if ∆u,i < −1.

(11)

Ẑ
Ẑ

After all the known entities in ZK are employed to train by
(11), we get the desired X and Y. Finally, Z’s rank-f
approximation , which can predict the missing data of Z, is
obtained as =XYT.

C. Incorporating Linear Biases into SL-LF

ẑ

According to [14], [27], [28], linear biases can be
incorporated into an LF model to improve its prediction
accuracy. Since SL-LF is also an LF-based model, we can
extend it with linear biases. As analyzed in [14], [27], [28],
linear biases commonly include the global average and the
observed deviations on users and items. With them, then, an
SL-LF model approximates u,i as follows:

ẑu,i = µ+bu+bi+

f∑
k=1

xu,kyi,k (12)

where μ denotes the global average value in ZK, bu denotes the
observed deviations on user u, and bi denotes the observed
deviations on item i, respectively. Given an HiDS matrix Z, μ
is computed as follows:

µ =

∑
(u,i)∈ZK

ru,i

|ZK |
. (13)

After that, bu and bi can be estimated in an easy way [27],
[28]:

bi =

∑
(u,i)∈Z(i)

(
ru,i−µ

)
θ1+ |Z(i)| , bu =

∑
(u,i)∈Z(u)

(
ru,i−µ−bi

)
θ2+ |Z(u)| (14)

where Z(i) denotes the known entities set in the i-th column of
Z, Z(u) denotes the known entities set in the u-th row of Z, θ1

 798 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 4, APRIL 2021

and θ2 denote the threshold constant and can be determined by
cross-validation [28]. Then, by incorporating linear biases into
SL-LF, (7) is changed into:

∆u,i = zu,i− ẑu,i = zu,i−µ−bu−bi−
f∑

k=1

xu,kyi,k. (15)

Finally, by combining (15) into (11), we can obtain the train-
ing rules for SL-LF with linear biases on a single entity zu,i.

D. Algorithm Design and Analysis

LFb̄
LFb̄

Cb̄

From the above analyses, we see that SL-LF has two
versions, i.e., without and with linear biases. We respectively
name SL-LF without and with linear biases as SL- and
SL-LFb. First, we design Algorithm 1 for SL- , whose
computational complexity can be derived as follows:

Cb̄ = Θ (1)+Θ (|U | × f)+Θ (|I| × f)

+Nmtr × (|ZK | × f ×2×Θ (1)+Θ (1))

≈ Θ (Nmtr × |ZK | × f) (16)
<<where we drop the lower order terms due to (|U| + |I|) |ZK| in

real-world applications. Second, we design Algorithm 2 for
SL-LFb, whose computational complexity Cb can be derived
as follows:

Cb = Θ (1)+Θ (|U | × f)+Θ (|I| × f)+Θ (|ZK |)+Θ (|ZK |)
+Θ (|ZK |)+Nmtr × (|ZK | × f ×2×Θ (1)+Θ (1))

≈ Θ (Nmtr × |ZK | × f) . (17)
LFb̄From (16) and (17), we see that SL- and SL-LFb have

the same computational complexity. The maximal-training-
round count Nmtr, known entity count |ZK|, and LF space
dimension f are crucial in deciding their computational
complexity.

Besides, to implement SL-LFb, we need the following data
structures: 1) two arrays with length |ZK| to cache training data
and corresponding predictions, 2) an array with length |U| to
cache observed deviations on users, 3) an array with length |I|
to cache observed deviations on items, 4) a matrix with size
|U| × f to cache X, and 5) a matrix with size |I| × f to cache Y.
Thus, SL-LFb’s space complexity is

S B = 2 |ZK |+ |U |+ |I|+ |U | × f + |I| × f

≈ Θ
(

f ×max
{
|ZK |

f
, |U | , |I|

})
.

(18)
LFb̄Although SL- does not need arrays to cache linear

biases, it has the same space complexity as SL-LFb.
In real-world applications, both Nmtr and f are positive

constants. Hence, SL-LF’s computational and space
complexity is linear with |ZK|, which is highly efficient and
applicable to big data-related industrial applications.

IV. Experiments and Results

A. General Settings
Datasets: Eight benchmark datasets are selected to conduct

the experiments. Table I summarizes their properties. They are
real HiDS datasets generated by industrial applications and
frequently adopted by prior studies [13], [29]. Dating is

collected by an online dating website LibimSeTi [30], Douban
is collected by Douban.com [13], [29], Eachmovie is collected
by the EachMovie system by the DEC Systems Research
Center [1], [31], Epinion is collected by Trustlet website [29],
Flixter is collected by the Flixter website [32], Jester is
collected by the joke-recommender Jester [32], and
MovieLens_10M and MovieLens_20M are collected by the
MovieLens system [33].

LFb̄Algorithm 1 SL-

Input: ZK
Operation　　　　　　　　　　　　　　　　　　　Cost
initializing f, λ, η, Nmtr (Max-training-round count)　 　Θ(1)
initializing X randomly　　　　　　　　　　　　　　Θ(|U|×f)
initializing Y randomly　　　　　　　　　　　　　 Θ(|I|×f)
while t ≤ Nmtr && not converge　　　　　　　　　 ×Nmtr
　for each entity zu,i in ZK　　　　　　　　　　　 ×|ZK|
　　for k=1 to f　　　　　　　　　　　　　　　 ×f
　　　computing xu,k according to (7) and (11)　　 Θ(1)
　　　computing yi,k according to (7) and (11)　　　 Θ(1)
　　end for　　　　　　　　　　　　　　　　　 −
　end for　　　　　　　　　　　　　　　　　　 −
　t=t+1　　　　　　　　　　　　　　　　　　 Θ(1)
end while　　　　　　　　　　　　　　　　　　 −
Output: X, Y

Algorithm 2 SL-LFb

Input: ZK
Operation　　　　　　　　　　　　　　　　　　　Cost
initializing f, λ, η, Nmtr (Max-training-round count)　 　Θ(1)
initializing X randomly　　　　　　　　　　　　　　Θ(|U|×f)
initializing Y randomly　　　　　　　　　　　　　 Θ(|I|×f)
computing μ according to (13)　　　　　　　　　　 Θ(|ZK|)
for each entity zu,i in ZK　　　　　　　　　　　　 ×|ZK|
　　computing bi according to (14)　　　　　　　　　Θ(1)
end for　　　　　　　　　　　　　　　　　　　 −
for each entity zu,i in ZK　　　　　　　　　　　　 ×|ZK|
computing bu according to (14)　　　　　　　　　 Θ(1)
end for　　　　　　　　　　　　　　　　　　　 −
while t ≤ Nmtr && not converge　　　　　　　　　　×Nmtr
　 for each entity zu,i in ZK　　　　　　　　　　　 ×|ZK|
　　 for k=1 to f　　　　　　　　　　　　　　　 ×f
　　　computing xu,k according to (11) and (15)　　 Θ(1)
　　　computing yi,k according to (11) and (15)　　　 Θ(1)
　　end for　　　　　　　　　　　　　　　　　 −
　end for　　　　　　　　　　　　　　　　　　 −
　t=t+1　　　　　　　　　　　　　　　　　　 Θ(1)
end while　　　　　　　　　　　　　　　　　　 −
Output: X, Y

Evaluation Metrics: Missing data prediction is a common
but important task in representing an HiDS matrix [34]. To
evaluate prediction accuracy, mean absolute error (MAE) and
root mean squared error (RMSE) are widely adopted:

MAE =

 ∑
(u,i)∈Γ

∣∣∣zu,i− ẑu,i
∣∣∣
abs

/|Γ|

WU AND LUO: ROBUST LATENT FACTOR ANALYSIS FOR PRECISE REPRESENTATION OF HIGH-DIMENSIONAL AND SPARSE DATA 799

RMS E =

√√√√ ∑
(u,i)∈Γ

(
zu,i− ẑu,i

)2

/|Γ|
where Γ denotes the testing set and |·|abs denotes the absolute
value of a given number. Lower MAE and RMSE indicate
higher missing data prediction accuracy. Besides, to evaluate
the computational efficiency of missing data prediction, we
measure CPU running time.

Experimental Designs: For each dataset, its 80% known
data are used as a training dataset and the remaining 20% ones
as a testing dataset. Five-fold cross-validations are adopted.
All the experiments are run on a PC with 3.4 GHz i7 CPU and
64 GB RAM. In the next experiments, we aim at answering
the following research questions:

1) How do the hyper-parameters of an SL-LF model impact
its prediction performance?

2) How do the outlier data impact the prediction
performance of an SL-LF model?

3) Does the proposed SL-LF model outperform related
state-of-the-art models?

B. Hyper-Parameter Sensitivity Tests

LFb̄

From Section III, we know that SL-LF has three parameters,
i.e., LF space dimension f, regularization parameter λ, and
learning rate η. Next, we analyze the behaviors of SL-
(without linear biases) and SL-LFb (with linear biases) with
respect to these parameters.

1) Impacts Off

LFb̄

This set of experiments increase f from 5 to 320. Figs. 2 and 3
record the results on D8. The complete results on all the
datasets are recorded in the Supplementary File1 of this paper.
From these results, we find that the larger f makes both SL-

 and SL-LFb have better representation learning ability on
most cases, which benefits for achieving a higher prediction
accuracy. However, such prediction accuracy gain slows
down when f is larger than a threshold, such as 20. Moreover,
we find exceptions that prediction accuracy decreases when f
increases from 5 to 40 on D4. One reason may be that
underfitting is caused by such hyper-parameters. Besides, the
larger f requires more computational cost as analyzed in (16)
and (17). Hence, f should be set appropriately to balance
prediction accuracy and computational cost according to a
specific task. As a rule of thumb, f is usually set to fall into
10–20 [14], [15], [35].

2) Impacts of λ and η
In this set of experiments, we increase λ from 0.01 to 0.1

and η from 0.0001 to 0.01 by performing a grid-based
search [36]. Figs. 4 and 5 show the results on D8. The
complete results on all the datasets are presented in the
Supplementary File1. From them, we conclude that:

0.676

0.660

0.644

0.628

0.612

0.596
0.580
0.0100.008

0.0060.0040.002 0
 (a) MAE

0.02
0.04 λ

η

0.06
0.08

0.10

M
A

E

0.878

0.860

0.842

0.824

0.806

0.788
0.770
0.010 0.0080.0060.0040.002

0
0.02

0.04
0.06

0.08
0.10

(b) RMSE
λ

η

R
M

SE

LFb̄Fig. 4. The experimental results of SL- with respect to λ and η on D8,

where f = 20.

0.676

0.660

0.644

0.628

0.612

0.596
0.580

0.010

M
A

E

0.0080.0060.0040.002 0
0.02

0.04 λ

η

0.06
0.08

0.10

 (a) MAE

0.878

0.860

0.842

0.824

0.806

0.788
0.770
0.010

0.008
0.0060.0040.002 0

0.02
0.04

0.06
0.08

0.10

(b) RMSE

λ

η

R
M

SE

Fig. 5. The experimental results of SL-LFb with respect to λ and η on D8,
where f = 20.

TABLE I
Properties of All the Datasets

No. Name |U| |I| |ZK| Density

D1 Dating 135 359 168 791 17 359 346 0.08%

D2 Douban 129 490 58 541 16 830 839 0.22%

D3 Eachmovie 72 916 1 628 2 811 718 2.37%

D4 Epinion 755 760 120 492 13 668 321 0.02%

D5 Flixter 147 612 48 794 8 196 077 0.11%

D6 Jester 24 983 100 1 186 324 47.49%

D7 MovieLens_10M 71 567 65 133 10 000 054 0.21%

D8 MovieLens_20M 138 493 26 744 20 000 263 0.54%

1https://pan.baidu.com/s/1o_8sKP0HRluNH1a4IWHW8w, Code: t3sw

0.63 f=5
f=10
f=20
f=40
f=80
f=160
f=320

0.62

0.61

0.60

0.59

0.58

0.57
0 100

Number of iterations
 (a) MAE

M
A

E

200 300 400

0.82

0.81

0.80

0.79

0.78

0.77

0.76
0 100

f=5
f=10
f=20
f=40
f=80
f=160
f=320

Number of iterations
(b) RMSE

200 300 400

R
M

SE

LFb̄Fig. 2. The training process of SL- with different f on D8, where λ =

0.01 and η = 0.001.

0.63

0.62

0.61

0.60

0.59

0.58

0.57

M
A

E

0 100
Number of iterations

 (a) MAE

200 300 400

f=5
f=10
f=20
f=40
f=80
f=160
f=320

0.82

0.81

0.80

0.79

0.78

0.77

0.76

R
M

SE

0 100
Number of iterations

(b) RMSE

200 300 400

f=5
f=10
f=20
f=40
f=80
f=160
f=320

Fig. 3. The training process of SL-LFb with different f on D8, where λ =
0.01 and η = 0.001.

 800 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 4, APRIL 2021

https://pan.baidu.com/s/1o_8sKP0HRluNH1a4IWHW8w

LFb̄

LFb̄

a) Both λ and η have a significant impact on prediction
accuracy of both SL- and SL-LFb. As λ and η increase,
MAE and RMSE decrease at first and then increase in general.
For example, on D8, RMSE of SL- decreases from 0.8116
to 0.7729 at the beginning. Then, it increases up to 0.8451 as λ
and η continue to increase.

b) λ and η have different situations in searching their
optimal values on the tested datasets. On the different
datasets, the optimal value of η is a small value like 0.001.
However, the optimal value of λ is different for the different
datasets. It distributes in the range from 0.02 to 0.09. Hence, λ
should be carefully tuned on the target dataset.

C. Outlier Data Sensitivity Tests
In this section, we compare an SL-LF model with a basic

LF (BLF) model when outlier data are added to the datasets.
BLF is modeled based on the L2-norm-oriented Loss while
SL-LF is done by the smooth L1-norm-oriented Loss. The
specific method of adding outlier data is: 1) randomly
selecting an unknown entity between two known entities as
the outlier entity for the input HiDS matrix Z, 2) assigning a
value (maximum or minimum known value) to the outlier
entity, 3) the percentage that outlier entities account for
known entities is increased from 0% to 100% with an interval
of 10%, and 4) the outlier entities are only added into the
training set. To illustrate this method, an example is given in
Fig. 6.

Training set:
Before adding outlier data

Original data: Blue entries Added data: Green entries

Training set:
After adding outlier data

4

4

1

2

5 1

3

2

3

? 4

5

5

1

1

1

3

1

2

5

2

3

1

4

?

?

?

?

? ?

?

? ?

?

?

?

?

? ? ?

? ?

?

?

?

????

Fig. 6. An example of adding outlier data.

LFb̄

LFb̄

Fig. 7 records the experimental results on D8.
Supplementary File1 records the complete results on all the
datasets. Since smooth L1-norm is less sensitive to outlier data
than L2-norm, we find that both SL- and SL-LFb become
much more robust than BLF as the percentage of outlier data
increases. For example, on D8, RMSEs of SL- and BLF
are 0.7767 and 0.7761, respectively when there are no outlier

LFb̄

data, and then become 0.8536 and 1.1244, respectively when
the percentage of outlier data is 100%. The improvement of
RMSE of BLF is 0.3483, which is about 4.53 times as large as
that of SL- at 0.0769. Therefore, we conclude that an SL-
LF model is robust to the outlier data.

0.9 BLF
SL-LFb

−

SL-LFb

0.8

0.8

0.7

0.6
0 0.2 0.4

Percentage of outlier entries
(a) MAE

M
A

E

0.6 0.8 1.0

1.200

1.075

0.950

0.825

0.700
0 0.2 0.4

Percentage of outlier entries
 (b) RMSE

0.6 0.8 1.0

BLF
SL-LFb

−

SL-LFb

R
M

SE

LFb̄Fig. 7. The outlier data sensitivity tests results of BLF, SL- ,

and SL-LFb on D8, where λ = 0.01, η = 0.001, and f = 20.

D. Comparison Between SL-LF and State-of-the-Art Models
We compare an SL-LF model with five related state-of-the-

art models, including three LF-based models (basic latent
factor (BLF), non-negative latent factor (NLF), and fast non-
negative latent factor (FNLF)) and two deep neural network
(DNN)-based models (AutoRec and deep collaborative
conjunctive recommender (DCCR)). Table II gives a brief
introduction to these models. To make a fair comparison, f is
set as 20 for all the LF-based models and the proposed SL-LF
model. Besides, we tune the other hyper-parameters for all the
involved models to make them achieve their highest
prediction accuracy.

1) Comparison of Prediction Accuracy

LFb̄

LFb̄

Table III presents the detailed comparison results. Statistical
analysis is conducted on these comparison results. First, the
win/loss counts of SL- /SL-LFb versus other models are
summarized in the third/second-to-last row of Table III.
Second, we perform Friedman test [40] on these comparison
results. The result is recorded in the last row of Table III,
where it accepts the hypothesis that these comparison models
have significant differences with a significance level of 0.05.
From these comparisons and statistical results, we find that a)
both SL- and SL-LFb achieve lower RMSE/MAE than the
other models on most testing cases, and b) SL-LFb achieves
the lowest F-rank value among all the models. Hence, we
conclude that SL-LFb has the highest prediction accuracy

TABLE II
Descriptions of All the Comparison Models

Model Description

BLF The basic LF model proposed in 2009 [14]. It has been extensively used in RSs.

NLF The regularized non-negative LF model proposed in 2016 [15]. It improves the L2-LF model by introducing the non-negative constraint into
objective function design.

FNLF A fast non-negative LF model based on generalized momentum proposed in 2018 [7]. It improves the NLF model.

AutoRec A DNN-based model proposed in 2015 [37]. It is an autoencoder [38] framework for CF. It is a representative model in DNN-based RSs.

DCCR A DNN-based model proposed in 2019 [39]. It improves AutoRec by using two different neural networks.

LFb̄SL- The proposed SL-LF model without linear biases.
SL-LFb The proposed SL-LF model with linear biases.

WU AND LUO: ROBUST LATENT FACTOR ANALYSIS FOR PRECISE REPRESENTATION OF HIGH-DIMENSIONAL AND SPARSE DATA 801

among all the models.

LFb̄
LFb̄

Next, we check whether SL-LFb achieves significantly
higher prediction accuracy than each single model. To do so,
we conduct the Wilcoxon signed-ranks test [41], [42] on the
comparison results of Table III. Wilcoxon signed-ranks test is
a nonparametric pairwise comparison procedure and has three
indicators – R+, R−, and p-value. The larger R+ value
indicates higher performance and the p-value indicates the
significance level. Table IV records the test results, where we
see that SL-LFb has a significantly higher prediction accuracy
than all the comparison models with a significance level of
0.05 except for SL- . However, SL-LFb achieves a much
larger R+ value than SL- , which verifies that linear biases
can boost an SL-LF model’s prediction accuracy.

2) Comparison of Computational Efficiency
To compare the computational efficiency of all the tested

models, we measure their CPU running times on all the
datasets. Fig. 8 presents the results. From it, we observe that:

a) DNN-based models (AutoRec and DCCR) cost much
more CPU running time than the other models due to their
time-consuming DNN-based learning strategy [43].

b) SL-LF costs slightly more CPU running time than BLF.
The reason is that SL-LF has the additional computational
procedures of discrimination (11) while BLF does not.

c) SL-LF costs less or more CPU running time than NLF
and FNLF on the different datasets.

Therefore, these results verify that SL-LF’s computational
efficiency is higher than those of DNN-based models and
comparable to those of other LF-based models.

E. Summary of Experiments
Based on the above experimental results and analyses, we

have the following conclusions:

TABLE III

LFb̄ LFb

The Comparison Results on Prediction Accuracy, Including Win/Loss Counts Statistic and Friedman Test, Where ●and ✪
Respectively Indicate That SL- , and SL- Have a Higher Prediction Accuracy Than Comparison Models

Dataset Metric BLF NLF FNLF AutoRec DCCR LFb̄SL- SL-LFb

D1
MAE 1.2392●✪ 1.2617●✪ 1.2588●✪ 1.2610●✪ 1.2574●✪ 1.1702 1.1686

RMSE 1.8066✪ 1.8245✪ 1.8215✪ 1.8027✪ 1.8013✪ 1.8275 1.7829

D2
MAE 0.5537●✪ 0.5590●✪ 0.5592●✪ 0.5606●✪ 0.5581●✪ 0.5516 0.5458

RMSE 0.7139●✪ 0.7150●✪ 0.7139●✪ 0.7080✪ 0.7074✪ 0.7094 0.6957

D3
MAE 0.1732●✪ 0.1767●✪ 0.1763●✪ 0.1784●✪ 0.1775●✪ 0.1731 0.1729

RMSE 0.2251● 0.2264●✪ 0.2259● 0.2305●✪ 0.2289●✪ 0.2242 0.2260

D4
MAE 0.3011●✪ 0.3047●✪ 0.3036●✪ 0.3014●✪ 0.3036●✪ 0.2967 0.2766

RMSE 0.5958✪ 0.5994●✪ 0.5977✪ 0.5946✪ 0.5952✪ 0.5992 0.4812

D5
MAE 0.6447●✪ 0.6550●✪ 0.6520●✪ 0.6295✪ 0.6308✪ 0.6348 0.6084

RMSE 0.8961●✪ 0.9056●✪ 0.9038●✪ 0.8682✪ 0.8792✪ 0.8949 0.8324

D6
MAE 0.7664●✪ 0.7769●✪ 0.7778●✪ 0.7905●✪ 0.7883●✪ 0.7552 0.7573

RMSE 0.9957✪ 1.0049●✪ 1.0003●✪ 1.0078●✪ 1.0042●✪ 0.9988 0.9936

D7
MAE 0.5999●✪ 0.6080●✪ 0.6068●✪ 0.6048●✪ 0.6002●✪ 0.5950 0.5980

RMSE 0.7819● 0.7893●✪ 0.7881● 0.7865● 0.7847● 0.7806 0.7887

D8
MAE 0.5886●✪ 0.5977●✪ 0.5961●✪ 0.5947●✪ 0.5902●✪ 0.5841 0.5857

RMSE 0.7737● 0.7819●✪ 0.7798●✪ 0.7802●✪ 0.7789● 0.7730 0.7790

Statistical analysis

● Win/Loss 13/3 15/1 14/2 11/5 11/5 – –

✪ Win/Loss 13/3 16/0 14/2 15/1 14/2 – –
F-rank* 3.281 6.313 5.125 4.813 3.969 2.625 1.875

* The smaller F-rank value denotes a higher prediction accuracy.

TABLE IV
Statistical Results on Table III by Conducting the

Wilcoxon Signed-Ranks Test

Comparison R+ R− p-Value
SL-LFb vs. BLF 121 15 0.0033
SL-LFb vs. NLF 136 0 0.0002
SL-LFb vs. FNL 133 3 0.0004

SL-LFb vs. AutoRec 134 2 0.0004
SL-LFb vs. DCCR 131 5 0.0006

LFb̄SL-LFb vs. SL- 100 37 0.0544

10000

8000

6000

4000

2000

D1 D2 D3 D4
Datasets

C
PU

 ru
nn

in
g

tim
e

(s
)

Much more
than 10000

BLF NLF FNLF AutoRec DCCR SL-LF

D5 D6 D7 D8
0

Fig. 8. The comparison CPU running time of involved models on D1–D8.

 802 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 4, APRIL 2021

1) An SL-LF model’s prediction accuracy is closely
connected with λ and η. As a rule of thumb, we can set
η=0.001 while λ should be fine-tuned according to a specific
target dataset.

2) SL-LF has significantly higher prediction accuracy than
state-of-the-art models for the missing data of an HiDS
matrix.

3) SL-LF’s computational efficiency is much higher than
those of DNN-based models and comparable to those of most
efficient LF-based models.

4) Linear biases have positive effects on improving SL-LF’s
prediction accuracy.

V. Related Work

An LF model is one of the most popular and successful
ways to efficiently predict the missing data of an HiDS matrix
[13], [14]. Up to now, various approaches are proposed to
implement an LF model, including a bias-based one [14], non-
negativity-constrained one [15], randomized one [17],
probabilistic one [44], dual-regularization-based one [45],
posterior-neighborhood-regularized one [16], graph regula-
rized one [18], neighborhood-and-location integrated one [6],
data characteristic-aware one [35], confidence-driven one
[46], deep-latent-factor based one [47], and nonparametric one
[48]. Although they are different from one another in terms of
model design or learning algorithms, they all adopt an L2-
norm-oriented Loss, making them sensitive to outlier data
[20]. Since outlier data are frequently found in an HiDS
matrix [24], [25], their robustness cannot be guaranteed.

To make an LF model less sensitive to outlier data, Zhu
et al. [19] proposed to adopt an L1-norm-oriented Loss.
However, such an LF model is multimodal because L1 norm is
less smooth than L2 norm, as shown in Fig. 1(a). Hence, an LF
model with an L1 norm-oriented Loss tends to be stacked by
some “bad” solutions, resulting in its failure to achieve high
prediction accuracy. Differently from these approaches, the
proposed SL-LF model adopts smooth L1-norm-oriented Loss,
making its solution space smoother and less multimodal than
that of an LF model with L1 norm-oriented Loss. Meanwhile,
its robustness is also higher than that of an LF model with L2
norm-oriented Loss.

Recently, DNN-based approaches to represent an HiDS
matrix have attracted extensive attention [49]. According to a
recent review regarding DNN-based studies [34], various
models are proposed to address the task of missing data
prediction for an HiDS matrix. Representative models include
an autoencoder-based model [37], hybrid autoencoder-based
model [39], multitask learning framework [50], neural
factorization machine [51], attentional factorization machine
[52], deep cooperative neural network [53], and convolutional
matrix factorization model [54]. However, DNN-based
models have the limit of high computational cost caused by
their learning strategies. For example, they take complete data
rather than known data of an HiDS matrix as input.
Unfortunately, an HiDS matrix generated by RSs commonly
has a very low rating density. In comparison, SL-LF trains
only on the known data of an HiDS matrix, thereby achieving
highly computational efficiency.

As analyzed in [13], [16], an LF model can not only predict
the missing data of an HiDS matrix but also be used as a data
representation approach. Hence, SL-LF has some potential
applications in representation learning, such as community
detection, autonomous vehicles [5], and medical image
analysis [55]–[57]. Besides, some researchers incorporate
non-negative constraints into an LF model to improve its
performance [17]. Similarly, we plan to improve SL-LF by
considering non-negative constraints [58] in the future.

VI. Conclusions

This study proposes, for the first time, a smooth L1-norm-
oriented latent factor (SL-LF) model to robustly and
accurately predict the missing data of a high-dimensional and
sparse (HiDS) matrix. Its main idea is to employ smooth L1-
norm rather than L2-norm to form its Loss (the error between
observed data and predicted ones), making it achieve highly
robust and accurate prediction of missing data in a matrix.
Extensive experiments on eight HiDS matrices from industrial
applications are conducted to evaluate the proposed model.
The experimental results verify that 1) it is robust to the
outlier data, 2) it significantly outperforms state-of-the-art
models in terms of prediction accuracy for the missing data of
an HiDS matrix, and 3) its computational efficiency is much
higher than those of DNN-based models and comparable to
those of most efficient LF models. Although it has shown
promising prospects, how to make its hyper-parameter λ self-
adaptive and improve its performance by considering non-
negative constraint remains open. We plan to fully investigate
these issues in the future.

References

 R. Q. Lu, X. L. Jin, S. M. Zhang, M. K. Qiu, and X. D. Wu, “A study on
big knowledge and its engineering issues,” IEEE Trans. Knowl. Data
Eng., vol. 31, no. 9, pp. 1630–1644, Sep. 2019.

[1]

 S. C. Gao, M. C. Zhou, Y. R. Wang, J. J. Cheng, H. Yachi, and J. H.
Wang, “Dendritic neuron model with effective learning algorithms for
classification, approximation, and prediction,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 30, no. 2, pp. 601–614, Feb. 2019.

[2]

 D. P. Bertsekas, “Feature-based aggregation and deep reinforcement
learning: A survey and some new implementations,” IEEE/CAA J.
Autom. Sinica, vol. 6, no. 1, pp. 1–31, Jan. 2019.

[3]

 H. Zahid, T. Mahmood, A. Morshed, and T. Sellis, “Big data analytics
in telecommunications: Literature review and architecture
recommendations,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 1, pp. 18–38,
Jan. 2020.

[4]

 Y. F. Ma, Z. Y. Wang, H. Yang, and L. Yang, “Artificial intelligence
applications in the development of autonomous vehicles: A survey,”
IEEE/CAA J. Autom. Sinica, vol. 7, no. 2, pp. 315–329, Mar. 2020.

[5]

 D. Ryu, K. Lee, and J. Baik, “Location-based web service QoS
prediction via preference propagation to address cold start problem,”
IEEE Trans. Serv. Comput., to be published. DOI: 10.1109/TSC.2018.
2821686

[6]

 X. Luo, Z. G. Liu, S. Li, M. S. Shang, and Z. D. Wang, “A fast non-
negative latent factor model based on generalized momentum method,”
IEEE Trans. Syst., Man, Cybern.: Syst., to be published. DOI:
10.1109/TSMC.2018.2875452

[7]

 J. D. Zhang, C. Y. Chow, and J. Xu, “Enabling kernel-based attribute-
aware matrix factorization for rating prediction,” IEEE Trans. Knowl.
Data Eng., vol. 29, no. 4, pp. 798–812, Apr. 2017.

[8]

 J. Castro, J. Lu, G. G. Zhang, Y. C. Dong, and L. Martínez, “Opinion[9]

WU AND LUO: ROBUST LATENT FACTOR ANALYSIS FOR PRECISE REPRESENTATION OF HIGH-DIMENSIONAL AND SPARSE DATA 803

http://dx.doi.org/10.1109/TKDE.2018.2866863
http://dx.doi.org/10.1109/TKDE.2018.2866863
http://dx.doi.org/10.1109/TNNLS.2018.2846646
http://dx.doi.org/10.1109/TNNLS.2018.2846646
http://dx.doi.org/10.1109/JAS.2018.7511249
http://dx.doi.org/10.1109/JAS.2018.7511249
http://dx.doi.org/10.1109/JAS.2020.1003021
10.1109/TSC.2018.2821686
10.1109/TSC.2018.2821686
http://dx.doi.org/10.1109/TKDE.2016.2641439
http://dx.doi.org/10.1109/TKDE.2016.2641439
http://dx.doi.org/10.1109/TKDE.2018.2866863
http://dx.doi.org/10.1109/TKDE.2018.2866863
http://dx.doi.org/10.1109/TNNLS.2018.2846646
http://dx.doi.org/10.1109/TNNLS.2018.2846646
http://dx.doi.org/10.1109/JAS.2018.7511249
http://dx.doi.org/10.1109/JAS.2018.7511249
http://dx.doi.org/10.1109/JAS.2020.1003021
10.1109/TSC.2018.2821686
10.1109/TSC.2018.2821686
http://dx.doi.org/10.1109/TKDE.2016.2641439
http://dx.doi.org/10.1109/TKDE.2016.2641439

dynamics-based group recommender systems,” IEEE Trans. Syst., Man,
Cybern.: Syst., vol. 48, no. 12, pp. 2394–2406, Dec. 2018.
 B. Smith and G. Linden, “Two decades of recommender systems at
Amazon.com,” IEEE Int. Comput., vol. 21, no. 3, pp. 12–18, May-Jun.
2017.

[10]

 M. G. Gong, X. M. Jiang, H. Li, and K. C. Tan, “Multiobjective sparse
non-negative matrix factorization,” IEEE Trans. Cybern., vol. 49, no. 8,
pp. 2941–2954, Aug. 2019.

[11]

 X. N. He, J. H. Tang, X. Y. Du, R. C. Hong, T. W. Ren, and T. S. Chua,
“Fast matrix factorization with nonuniform weights on missing data,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 8, pp. 2791–2804,
Aug. 2020.

[12]

 X. Luo, M. C. Zhou, Y. N. Xia, and Q. S. Zhu, “An efficient non-
negative matrix-factorization-based approach to collaborative filtering
for recommender systems,” IEEE Trans. Ind. Inform., vol. 10, no. 2,
pp. 1273–1284, May 2014.

[13]

 Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, no. 8, pp. 30–37, Aug. 2009.

[14]

 X. Luo, M. C. Zhou, S. Li, Z. H. You, Y. N. Xia, and Q. S. Zhu, “A
nonnegative latent factor model for large-scale sparse matrices in
recommender systems via alternating direction method,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 27, no. 3, pp. 579–592, Mar. 2016.

[15]

 D. Wu, Q. He, X. Luo, M. S. Shang, Y. He, and G. Y. Wang, “A
Posterior-neighborhood-regularized latent factor model for highly
accurate web service QoS prediction,” IEEE Trans. Serv. Comput., to be
published. DOI: 10.1109/TSC.2019.2961895

[16]

 M. S. Shang, X. Luo, Z. G. Liu, J. Chen, Y. Yuan, and M. C. Zhou,
“Randomized latent factor model for high-dimensional and sparse
matrices from industrial applications,” IEEE/CAA J. Autom. Sinica,
vol. 6, no. 1, pp. 131–141, Jan. 2019.

[17]

 C. C. Leng, H. Zhang, G. R. Cai, I. Cheng, and A. Basu, “Graph
regularized Lp smooth non-negative matrix factorization for data
representation,” IEEE/CAA J. Automa. Sinica, vol. 6, no. 2, pp. 584–595,
Mar. 2019.

[18]

 X. K. Zhu, X. Y. Jing, D. Wu, Z. Y. He, J. C. Cao, D. Yue, and L. N.
Wang, “Similarity-maintaining privacy preservation and Location-
aware Low-rank matrix factorization for QoS prediction based web
service recommendation,” IEEE Trans. Serv. Comput., to be published.
DOI: 10.1109/TSC.2018.2839741

[19]

 L. Wang, M. D. Gordon, and J. Zhu, “Regularized least absolute
deviations regression and an efficient algorithm for parameter tuning,”
in Proc. 6th IEEE Int. Conf. Data Mining, Hong Kong, China, 2006, pp.
690–700.

[20]

 W. T. Ma, N. Li, Y. H. Li, J. D. Duan, and B. D. Chen, “Sparse
normalized least mean absolute deviation algorithm based on
unbiasedness criterion for system Identification with noisy input,” IEEE
Access, vol. 6, pp. 14379–14388, Feb. 2018.

[21]

 Q. F. Ke and T. Kanade, “Robust subspace computation using L1 norm:
School of computer science,” Carnegie Mellon University, Pittsburgh,
PA, CMU-CS-03-172, Aug. 2003.

[22]

 R. Koenker and K. F. Hallock, “Quantile regression,” J. Econom.
Perspect., vol. 15, no. 4, pp. 143–156, 2001.

[23]

 C. Wu, W. W. Qiu, Z. B. Zheng, X. Y. Wang, and X. H. Yang, “Qos
prediction of web services based on two-phase K-means clustering,” in
Proc. IEEE Int. Conf. Web Services, New York, USA, 2015, pp.
161–168.

[24]

 B. Lakshminarayanan, G. Bouchard, and C. Archambeau, “Robust
Bayesian matrix factorisation,” in Proc. the 14th Int. Conf. Artificial
Intelligence and Statistics, Ft. Lauderdale, USA, 2011, pp. 425–433.

[25]

 D. Wu, Y. He, X. Luo, M. S. Shang, and X. D. Wu, “Online feature
selection with capricious streaming features: A general framework,” in
Proc. IEEE Int. Conf. Big Data, Los Angeles, USA, 2019, pp. 683–688.

[26]

 Y. Yuan, X. Luo, and M. S. Shang, “Effects of preprocessing and
training biases in latent factor models for recommender systems,”
Neurocomputing, vol. 275, pp. 2019–2030, Jan. 2018.

[27]

 Y. Koren and R. Bell, “Advances in collaborative filtering,” in[28]

Recommender Systems Handbook, F. Ricci, L. Rokach, B. Shapira, P.
B. Kantor, Eds. Boston, USA: Springer, 2015, pp. 77–118.
 P. Massa and P. Avesani, “Trust-aware recommender systems,” in Proc.
ACM Conf. Recommender Systems, Minneapolis, USA, 2007, pp.
17–24.

[29]

 L. Brozovsky and V. Petricek, “Recommender system for online dating
service,” arXiv: cs/0703042, 2007.

[30]

 Y. Shi, M. Larson, and A. Hanjalic, “Collaborative filtering beyond the
user-item matrix: A survey of the state of the art and future challenges,”
ACM Comput. Surv., vol. 47, no. 1, Article No. 3, May 2014.

[31]

 K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigentaste: A
constant time collaborative filtering algorithm,” Inform. Retrieval,
vol. 4, no. 2, pp. 133–151, Jul. 2001.

[32]

 J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon,
and J. Riedl, “GroupLens: Applying collaborative filtering to Usenet
news,” Commun. ACM, vol. 40, no. 3, pp. 77–87, Mar. 1997.

[33]

 S. Zhang, L. N. Yao, A. X. Sun, and Y. Tay, “Deep learning based
recommender system: A survey and new perspectives,” ACM Comput.
Surv., vol. 52, no. 1, Article No. 5, Feb. 2019.

[34]

 D. Wu, X. Luo, M. S. Shang, Y. He, G. Y. Wang, and X. D. Wu, “A
data-characteristic-aware latent factor model for web services QoS
prediction,” IEEE Trans. Knowl. Data Eng., to be published. DOI:
10.1109/TKDE.2020.3014302

[35]

 P. Y. Zhang, S. Shu, and M. C. Zhou, “An online fault detection model
and strategies based on SVM-Grid in clouds,” IEEE/CAA J. Autom.
Sinica, vol. 5, no. 2, pp. 445–456, Mar. 2018.

[36]

 S. Sedhain, A. K. Menon, S. Sanner, and L. X. Xie, “AutoRec:
Autoencoders meet collaborative filtering,” in Proc. the 24th Int. Conf.
World Wide Web, Florence, Italy, 2015, pp. 111–112.

[37]

 Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, Article no. 7553, pp. 436−444, May 2015. DOI: 10.1038/nature
14539.

[38]

 Q. X. Wang, B. B. Peng, X. Y. Shi, T. Q. Shang, and M. S. Shang,
“DCCR: Deep collaborative conjunctive recommender for rating
prediction,” IEEE Access, vol. 7, pp. 60186–60198, May 2019.

[39]

 J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, Dec. 2006.

[40]

 B. Rosner, R. J. Glynn, and M. L. T. Lee, “The Wilcoxon signed rank
test for paired comparisons of clustered data,” Biometrics, vol. 62, no. 1,
pp. 185–192, Mar. 2006.

[41]

 D. Wu, X. Luo, G. Y. Wang, M. S. Shang, Y. Yuan, and H. Y. Yan, “A
highly accurate framework for self-labeled semisupervised classification
in industrial applications,” IEEE Trans. Ind. Inform., vol. 14, no. 3,
pp. 909–920, Mar. 2018.

[42]

 Z. H. Zhou and J. Feng, “Deep forest: Towards an alternative to deep
neural networks,” in Proc. the 26th Int. Joint Conf. on Artificial
Intelligence, Melbourne, Australia, 2017, pp. 3553–3559.

[43]

 X. Y. Ren, M. N. Song, E. Haihong, and J. D. Song, “Context-aware
probabilistic matrix factorization modeling for point-of-interest
recommendation,” Neurocomputing, vol. 241, pp. 38–55, Jun. 2017.

[44]

 H. Wu, Z. X. Zhang, K. Yue, B. B. Zhang, J. He, and L. C. Sun, “Dual-
regularized matrix factorization with deep neural networks for
recommender systems,” Knowl.-Based Syst., vol. 145, pp. 46–58, Apr.
2018.

[45]

 C. Wang, Q. Liu, R. Z. Wu, E. H. Chen, C. R. Liu, X. P. Huang, and Z.
Y. Huang, "Confidence-aware matrix factorization for recommender
systems, " in Proc. the 32nd AAAI Conf. Artificial Intelligence, New
Orleans, USA, 2018, pp. 434–442.

[46]

 D. Wu, X. Luo, M. S. Shang, Y. He, G. Y. Wang, and M. C. Zhou, “A
deep latent factor model for high-dimensional and sparse matrices in
recommender systems,” IEEE Trans. Syst., Man, Cybern.: Syst., to be
published. DOI: 10.1109/TSMC.2019.2931393

[47]

 K. Yu, S. H. Zhu, J. Lafferty, and Y. H. Gong, “Fast nonparametric
matrix factorization for large-scale collaborative filtering,” in Proc. the
32nd ACM SIGIR Int. Conf. Research and Development in Information
Retrieval, Boston, USA, 2009, pp. 211–218.

[48]

 804 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 4, APRIL 2021

http://dx.doi.org/10.1109/MIC.2017.72
http://dx.doi.org/10.1109/TCYB.2018.2834898
http://dx.doi.org/10.1109/TNNLS.2018.2890117
http://dx.doi.org/10.1109/TII.2014.2308433
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1109/TNNLS.2015.2415257
http://dx.doi.org/10.1109/TNNLS.2015.2415257
http://dx.doi.org/10.1109/JAS.2018.7511189
http://dx.doi.org/10.1109/JAS.2019.1911417
http://dx.doi.org/10.1109/ACCESS.2018.2800278
http://dx.doi.org/10.1109/ACCESS.2018.2800278
http://dx.doi.org/10.1257/jep.15.4.143
http://dx.doi.org/10.1257/jep.15.4.143
http://dx.doi.org/10.1016/j.neucom.2017.10.040
http://dx.doi.org/10.1023/A:1011419012209
http://dx.doi.org/10.1145/245108.245126
http://dx.doi.org/10.1109/JAS.2017.7510817
http://dx.doi.org/10.1109/JAS.2017.7510817
Nature
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/ACCESS.2019.2915531
http://dx.doi.org/10.1111/j.1541-0420.2005.00389.x
http://dx.doi.org/10.1109/TII.2017.2737827
http://dx.doi.org/10.1016/j.neucom.2017.02.005
http://dx.doi.org/10.1016/j.knosys.2018.01.003
http://dx.doi.org/10.1109/MIC.2017.72
http://dx.doi.org/10.1109/TCYB.2018.2834898
http://dx.doi.org/10.1109/TNNLS.2018.2890117
http://dx.doi.org/10.1109/TII.2014.2308433
http://dx.doi.org/10.1109/MC.2009.263
http://dx.doi.org/10.1109/TNNLS.2015.2415257
http://dx.doi.org/10.1109/TNNLS.2015.2415257
http://dx.doi.org/10.1109/JAS.2018.7511189
http://dx.doi.org/10.1109/JAS.2019.1911417
http://dx.doi.org/10.1109/ACCESS.2018.2800278
http://dx.doi.org/10.1109/ACCESS.2018.2800278
http://dx.doi.org/10.1257/jep.15.4.143
http://dx.doi.org/10.1257/jep.15.4.143
http://dx.doi.org/10.1016/j.neucom.2017.10.040
http://dx.doi.org/10.1023/A:1011419012209
http://dx.doi.org/10.1145/245108.245126
http://dx.doi.org/10.1109/JAS.2017.7510817
http://dx.doi.org/10.1109/JAS.2017.7510817
Nature
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/ACCESS.2019.2915531
http://dx.doi.org/10.1111/j.1541-0420.2005.00389.x
http://dx.doi.org/10.1109/TII.2017.2737827
http://dx.doi.org/10.1016/j.neucom.2017.02.005
http://dx.doi.org/10.1016/j.knosys.2018.01.003

 X. N. He, L. Z. Liao, H. W. Zhang, L. Q. Nie, X. Hu, and T. S. Chua,
“Neural collaborative filtering,” in Proc. the 26th Int. Conf. World Wide
Web, Perth, Australia, 2017, pp. 173–182.

[49]

 P. J. Li, Z. H. Wang, Z. C. Ren, L. D. Bing, and W. Lam, “Neural rating
regression with abstractive tips generation for recommendation,” in
Proc. the 40th Int. ACM SIGIR Conf. Research and Development in
Information Retrieval, Shinjuku, Japan, 2017, pp. 345–354.

[50]

 X. N. He and T. S. Chua, “Neural factorization machines for sparse
predictive analytics,” in Proc. the 40th Int. ACM SIGIR Conf. Research
and Development in Information Retrieval, Shinjuku, Japan, 2017, pp.
355–364.

[51]

 J. Xiao, H. Ye, X. N. He, H. W. Zhang, F. Wu, and T. S. Chua,
“Attentional factorization machines: Learning the weight of feature
interactions via attention networks,” in Proc. the 26th Int. Joint. Conf.
on Artificial Intelligence, Melbourne, Australia, 2017, pp. 3119–3125.

[52]

 L. Zheng, V. Noroozi, and P. S. Yu, “Joint deep modeling of users and
items using reviews for recommendation,” in Proc. the 10th ACM Int.
Conf. Web Search and Data Mining, Cambridge, UK, 2017, pp.
425–434.

[53]

 D. Kim, C. Park, J. Oh, S. Lee, and H. Yu, “Convolutional matrix
factorization for document context-aware recommendation,” in Proc.
the 10th ACM Conf. Recommender Systems, Boston, USA, 2016, pp.
233–240.

[54]

 N. Y. Zeng, Z. D. Wang, H. Zhang, K. E. Kim, Y. R. Li and X. H. Liu,
“An improved particle filter with a novel hybrid proposal distribution
for quantitative analysis of gold immunochromatographic strips,” IEEE
Trans. Nanotechnol., vol. 18, pp. 819–829, Aug. 2019.

[55]

 N. Y. Zeng, Z. D. Wang, B. Zineddin, Y. R. Li, M. Du, L. Xiao, X. H.
Liu, and T. Young, “Image-based quantitative analysis of gold
immunochromatographic strip via cellular neural network approach,”
IEEE Trans. Med. Imag., vol. 33, no. 5, pp. 1129–1136, May 2014.

[56]

 N. Y. Zeng, H. Li, Z. D. Wang, W. B. Liu, S. M. Liu, F. E. Alsaadi, and
X. H. Liu, “Deep-reinforcement-learning-based images segmentation
for quantitative analysis of gold immunochromatographic strip,”
Neurocomputing, to be published. DOI: 10.1016/j.neucom.2020.04.001

[57]

 Z. Q. Shu, X. J. Wu, C. Z. You, Z. Liu, P. Li, H. H. Fan, and F. Y. Ye,
“Rank-constrained nonnegative matrix factorization for data

[58]

representation,” Inform. Sci., vol. 528, pp. 133–146, Aug. 2020.

Di Wu (M’19) received the Ph.D. degree in
computer application technology from Chongqing
Institute of Green and Intelligent Technology
(CIGIT), Chinese Academy of Sciences (CAS),
Chongqing, China in 2019. Currently, he is an
Associate Professor with the CIGIT, CAS. He was a
visiting scholar during the time from April 2018 to
April 2019 at the University of Louisiana, Lafayette,
USA. His research interests include machine learning
and data mining. He has published over 40 papers in

IEEE Trans. Syst, Man, Cybern.: Syst., IEEE Trans. Knowl. Data Eng., IEEE
Trans. Ind. Inform., IEEE Trans. Serv. Comput., IEEE Trans. Neural Netw.
Learn. Syst., IEEE International Conference on Data Mining, ACM
International World Wide Web Conferences, International Joint Conference
on Artificial Intelligence, etc.

Xin Luo (M’14–SM’17) received the B.S. degree in
computer science from the University of Electronic
Science and Technology of China, Chengdu, China
in 2005, and the Ph.D. degree in computer science
from Beihang University, Beijing, China in 2011. He
is currently also a distinguished Professor of
computer science with the Dongguan University of
Technology, Dongguan, China. In 2016, he joined
the Chongqing Institute of Green and Intelligent
Technology, Chinese Academy of Sciences,

Chongqing, China, as a Professor of computer science and engineering. His
current research interests include big data analysis and intelligent control. He
has published over 100 papers (including over 50 IEEE transactions papers)
in the above areas. He was a recipient of the Hong Kong Scholar Program
jointly by the Society of Hong Kong Scholars and China Post-Doctoral
Science Foundation in 2014, the Pioneer Hundred Talents Program of
Chinese Academy of Sciences in 2016, and the Advanced Support of the
Pioneer Hundred Talents Program of Chinese Academy of Sciences in 2018.
He is currently serving as an Associate Editor for the IEEE/CAA Journal of
Automatica Sinica, IEEE Access, and Neurocomputing. He received the
Outstanding Associate Editor award of IEEE Access in 2018. He has also
served as the Program Committee Member for over 20 international
conferences.

WU AND LUO: ROBUST LATENT FACTOR ANALYSIS FOR PRECISE REPRESENTATION OF HIGH-DIMENSIONAL AND SPARSE DATA 805

http://dx.doi.org/10.1109/TNANO.2019.2932271
http://dx.doi.org/10.1109/TNANO.2019.2932271
http://dx.doi.org/10.1109/TMI.2014.2305394
http://dx.doi.org/10.1016/j.ins.2020.04.017
http://dx.doi.org/10.1109/TNANO.2019.2932271
http://dx.doi.org/10.1109/TNANO.2019.2932271
http://dx.doi.org/10.1109/TMI.2014.2305394
http://dx.doi.org/10.1016/j.ins.2020.04.017
http://dx.doi.org/10.1109/TNANO.2019.2932271
http://dx.doi.org/10.1109/TNANO.2019.2932271
http://dx.doi.org/10.1109/TMI.2014.2305394
http://dx.doi.org/10.1109/TNANO.2019.2932271
http://dx.doi.org/10.1109/TNANO.2019.2932271
http://dx.doi.org/10.1109/TMI.2014.2305394
http://dx.doi.org/10.1016/j.ins.2020.04.017
http://dx.doi.org/10.1016/j.ins.2020.04.017

	I Introduction
	II Preliminaries
	III Smooth L1-Norm-Oriented Latent Factor Model
	A Objective Formulation
	B Model Optimization
	C Incorporating Linear Biases into SL-LF
	D Algorithm Design and Analysis

	IV Experiments and Results
	A General Settings
	B Hyper-Parameter Sensitivity Tests
	C Outlier Data Sensitivity Tests
	D Comparison Between SL-LF and State-of-the-Art Models
	E Summary of Experiments

	V Related Work
	VI Conclusions

