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   Abstract—High-dimensional  and  sparse  (HiDS)  matrices
commonly  arise  in  various  industrial  applications,  e.g.,
recommender systems (RSs), social networks, and wireless sensor
networks. Since they contain rich information, how to accurately
represent them is of great significance. A latent factor (LF) model
is  one  of  the  most  popular  and  successful  ways  to  address  this
issue. Current LF models mostly adopt L2-norm-oriented Loss to
represent  an  HiDS  matrix,  i.e.,  they  sum  the  errors  between
observed data and predicted ones with L2-norm. Yet L2-norm is
sensitive  to  outlier  data.  Unfortunately,  outlier  data  usually  exist
in  such  matrices.  For  example,  an  HiDS  matrix  from  RSs
commonly  contains  many  outlier  ratings  due  to  some
heedless/malicious users. To address this issue, this work proposes
a smooth L1-norm-oriented latent factor (SL-LF) model. Its main
idea is to adopt smooth L1-norm rather than L2-norm to form its
Loss, making it have both strong robustness and high accuracy in
predicting  the  missing  data  of  an  HiDS  matrix.  Experimental
results  on  eight  HiDS  matrices  generated  by  industrial
applications  verify  that  the  proposed  SL-LF  model  not  only  is
robust  to  the  outlier  data  but  also  has  significantly  higher
prediction  accuracy  than  state-of-the-art  models  when  they  are
used to predict the missing data of HiDS matrices.
    Index Terms—High-dimensional  and  sparse  matrix, L1-norm, L2-
norm, latent factor model , recommender system, smooth L1-norm.
 

I.  Introduction

IN  this  era  of  information  explosion,  people  are  frequently
inundated  by  big  data  from  various  industrial  applications

[1]–[5],  e.g.,  recommender  systems  (RSs),  social  networks,
and  wireless  sensor  networks.  Among  these  applications,
matrices  are  commonly  adopted  to  represent  the  relationship
between two types of entities. For example, a user-item rating

matrix  is  frequently  seen  in  recommender  systems  (RSs)
[6]–[9], where each row indicates a specific user, each column
indicates  a  specific  item (e.g.,  movie,  electronic product,  and
music),  and  each  entry  indicates  a  user’s  preference  on  an
item.

In big data-related applications like Amazon [10], since the
relation  among  numerous  entities  is  unlikely  to  be  fully
observed  in  practice,  matrices  from  these  applications  are
usually  high-dimensional  and  sparse  (HiDS)  [7],  [11].  Yet
these HiDS matrices contain rich formation regarding various
valuable  knowledge,  e.g.,  user’s  potential  preferences  on
items  in  RSs.  Hence,  how  to  precisely  extract  useful
information  from  an  HiDS  matrix  becomes  a  hot  yet  thorny
issue in industrial applications.

Up to now, various approaches and models are proposed to
address  this  issue  [6]–[9].  Among  them,  a  latent  factor  (LF)
model,  which originates  from matrix  factorization techniques
[11],  [12],  is  becoming  increasingly  popular  due  to  its  high
accuracy  and  scalability  in  industrial  applications  [13],  [14].
Given an HiDS matrix, an LF model represents it by training
two low-dimensional  LF matrices  based on its  observed data
only  [13],  [15].  To  model  an  accurate  LF  model,  how  to
design  its Loss function  is  very  crucial,  where Loss denotes
the  sum of  errors  between observed  data  (ground truths)  and
predicted  ones  computed  by  a  specific  norm  on  an  HiDS
matrix [13], [14].

Currently,  most  LF  models  adopt L2-norm-oriented Loss
[12]–[18]  while  few  ones  adopt L1-norm-oriented Loss [19].
Fig. 1(a) illustrates  the  differences  between L1-norm-oriented
and L2-norm-oriented Losses [19]–[21]  where Error denotes
the errors between predicted results and ground truths: 1) the
former  is  less  sensitive  to Error than  the  latter,  thereby
enhancing the robustness of a resultant model [19], [21], [22],
and 2) the latter is smoother than the former when the absolute
value  of Error is  small  (less  than  1),  thereby  enhancing  the
stability of a resultant model [23].

Hence,  although  an  LF  model  with L2-norm-oriented Loss
can  achieve  a  steady  and  accurate  prediction  for  the  missing
data  of  an  HiDS  matrix  space  [23],  its  robustness  cannot  be
guaranteed  when  such  a  matrix  is  mixed  with  outlier  data.
Unfortunately,  outlier  data  usually  exist  in  an  HiDS  matrix.
For  example,  an  HiDS  matrix  from  RSs  commonly  contains
many  outlier  ratings  due  to  some  heedless/malicious  users
(e.g.,  a  user  rates  an  item  randomly  in  the  feedback  or
badmouths a specific item) [24], [25].

 
Manuscript  received  September  4,  2020;  revised  October  31,  2020;

accepted  November  17,  2020.  This  work  was  supported  in  part  by  the
National  Natural  Science  Foundation  of  China  (61702475,  61772493,
61902370,  62002337),  in  part  by  the  Natural  Science  Foundation  of
Chongqing, China (cstc2019jcyj-msxmX0578, cstc2019jcyjjqX0013),  in part
by the Chinese Academy of Sciences “Light of West China” Program, in part
by  the  Pioneer  Hundred  Talents  Program  of  Chinese  Academy  of  Sciences,
and  by  Technology  Innovation  and  Application  Development  Project  of
Chongqing,  China  (cstc2019jscx-fxydX0027).  Recommended  by  Associate
Editor Shangce Gao. (Corresponding author: Xin Luo.)

Citation:  D.  Wu  and  X.  Luo, “Robust  latent  factor  analysis  for  precise
representation  of  high-dimensional  and  sparse  data,” IEEE/CAA  J.  Autom.
Sinica, vol. 8, no. 4, pp. 796–805, Apr. 2021.

The  authors  are  with  the  Chongqing  Key  Laboratory  of  Big  Data  and
Intelligent  Computing,  Chongqing  Institute  of  Green  and  Intelligent
Technology,  Chinese  Academy  of  Sciences,  Chongqing  400714,  and  also
with  the  Chongqing  School,  University  of  Chinese  Academy  of  Sciences,
Chongqing 400714, China (e-mail: wudi@cigit.ac.cn; luoxin21@cigit.ac.cn).

Color  versions  of  one  or  more  of  the  figures  in  this  paper  are  available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2020.1003533

796 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 4, APRIL 2021

http://ieeexplore.ieee.org
https://doi.org/10.1109/JAS.2020.1003533


On  the  other  hand,  although  an  LF  model  with L1-norm-
oriented Loss has  intrinsic  robustness,  its  solution  space  for
predicting the missing data of an HiDS matrix is multimodal.
The reason is that L1-norm-oriented Loss is not smooth when
the predicted results and ground truths are close to each other.
As a result, an LF model with L1-norm-oriented Loss may be
stacked  by  some “bad” solutions,  making  it  unable  to
guarantee high prediction accuracy.

From  the  aforementioned  discussions,  we  see  that  both L1
and L2-norm-oriented Losses are  not  the  best  choice  for
modeling an LF model. Then, do we have an alternative one?
This  work  aims  to  answer  it. Fig. 1(b) illustrates  the  smooth
L1-norm-oriented Loss, where we observe that Loss not only is
robust  to Error but  also  has  a  smooth  gradient  when  the
absolute  value  of Error is  smaller  than  1.  Motivated  by  this
observation,  we  propose  a  smooth L1-norm-oriented  latent
factor  (SL-LF)  model.  Its  main  idea  is  to  adopt  smooth L1-
norm to form its Loss,  making it have both strong robustness
and high accuracy in predicting the missing data of  an HiDS
matrix.
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Fig. 1.     The relationship between Loss and Error with different norms to
solve a regression problem.
 

Main contributions of this work include:
1)  Proposing  an  SL-LF  model  with  strong  robustness  and

high  accuracy  in  predicting  the  missing  data  of  an  HiDS
matrix.

2)  Performing a suite  of  theoretical  analyses and algorithm
designs for the proposed SL-LF model.

3)  Conducting  extensive  empirical  studies  on  eight  HiDS
matrices  generated  by  industrial  applications  to  evaluate  the
proposed model and other state-of-the-art ones.

To  the  author’s  best  knowledge,  this  is  the  first  study  to
employ  smooth L1-norm  to  implement  an  LF  model  for
predicting the missing data of  an HiDS matrix.  Experimental
results  demonstrate  that  compared  with  state-of-the-art
models,  SL-LF  achieves  significant  accuracy  gain  when
predicting missing data of an HiDS matrix. Its computational
efficiency is also highly competitive when compared with the
most efficient LF models.

The  rest  of  the  paper  is  organized  as  follows.  Section  II
states  preliminaries.  Section  III  presents  an  SL-LF  model.
Section  IV  reveals  experimental  results.  Section  V  discusses
related work. Finally, Section VI concludes this paper. 

II.  Preliminaries

In  this  section,  we  give  the  related  definitions  and
descriptions of  an HiDS matrix and an LF model.  According

to [9], [16], [18], they are defined as follows.

<<

Definition  1 (HiDS  matrix): Given  a  set U and  a  set I, Z
denotes a |U|  × |I|  matrix where each element zu,i denotes the
relation between element u (u∈U) and element i (i∈I). ZK and
ZU respectively  denote  the  known  and  the  unknown  entities
sets of Z. Z is an HiDS matrix with |ZK| |ZU|.

Built on an HiDS matrix, an LF model is defined as follows
[13], [14], [26].

Ẑ
Ẑ << Ẑ

Ẑ Ẑ ẑ

Definition  2  (Latent  factor  model): Given Z, f,  a  |U|  × f
latent  factor  matrix X,  and  an  |I|  × f latent  factor  matrix Y,  a
latent  factor  model  is  to  search  for X and Y to  achieve Z’s
rank-f approximation  by  minimizing  the  errors  between Z
and  on ZK with the condition of f  min{|U|, |I|}, where 
is given by  = XYT. ’s each element u,i is the prediction for
each zu,i.

Ẑ
To  implement  an  LF  model,  a Loss function  needs  to  be

carefully designed to measure the difference between Z and 
[14]. Currently, L2-norm is most commonly used [7], [17]:
 

argmin
X,Y

ε(X,Y) =
∥∥∥∥Ω⊙ (

Z− Ẑ
)∥∥∥∥2

L2
=

∥∥∥∥Ω⊙ (
Z−XYT

)∥∥∥∥2

L2
(1)

∥·∥L2where  denotes  the L2-norm of  a  matrix,  ⊙ denotes  the
Hadamard  product  (the  component-wise  multiplication),  and
Ω is a |U| × |I| binary index matrix:
 

Ωu,i =

 1, if zu,i is known

0, otherwise.
(2)

As analyzed in [14], an LF model is easy to overfit on ZK of
an HiDS matrix by minimizing (1). Tikhonov regularization is
thus adopted to prevent such an overfitting problem [9], [16],
[18].  Then,  with  it,  an  LF model  has  the  following  objective
function:
 

argmin
X,Y

ε(X,Y) =
∥∥∥∥Ω⊙ (

Z−XYT
)∥∥∥∥2

L2
+λ

(
∥X∥2L2

+ ∥Y∥2L2

)
(3)

where λ is  a  regularization  controlling  parameter.  Next,  we
present an SL-LF model. 

III.  Smooth L1-Norm-Oriented Latent Factor Model
 

A.  Objective Formulation
As L2-norm  is  sensitive  to  outlier  data  [20],  an  LF  model

with  a Loss function  of  (1)  lacks  robustness.  On  the  other
hand,  an  LF  model  with  an L1-norm-oriented Loss function
cannot  guarantee  a  high  prediction  accuracy  because  its
solution  space  is  not  smooth.  As  shown  in Fig. 1(b),  smooth
L1-norm  has  the  merits  of  both  robustness  and  smoothness.
Yet it  remains open whether an LF model with a smooth L1-
norm-oriented Loss function  can achieve  a  highly  robust  and
accurate prediction for the missing data of an HiDS matrix. To
answer it, we first define the smooth L1-norm of a matrix.

∥R∥S L1

Definition 3 (Smooth L1-norm of a matrix): Given a matrix
R with M rows  and N columns,  symbol  denotes  the
smooth L1-norm of R.
 

∥R∥S L1 =

M∑
m=1

N∑
n=1

v, v=


√

r2
m,n, if |rmn| ≤ 1
|rmn|, if |rmn| > 1

(4)

where rm,n denotes R’s element at m-th row and n-th column,
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m∈{1, 2, …, M}, n∈{1, 2, …, N}.
Then,  to  implement  an  SL-LF  model,  we  design  the

following objective function:
 

argmin
X,Y

ε(X,Y) =
∥∥∥∥Ω⊙ (

Z−XYT
)∥∥∥∥2

S L1
+λ

(
∥X∥2L2

+ ∥Y∥2L2

)
(5)

∥·∥S L1where  denotes  the  smooth L1-norm  of  a  matrix.  As Z
contains numerous unknown data, (5) should be expanded into
the following data density-oriented form for high efficiency in
both storage and computation [13], [15]:
 

argmin
X,Y

ε(X,Y) =

∑
(u,i)∈ZK

(
∆u,i

)2
+λ

∑
(u,i)∈ZK

 f∑
k=1

x2
u,k +

f∑
k=1

y2
i,k


if

∣∣∣∣∆u,i

∣∣∣∣ ≤ 1

∑
(u,i)∈ZK

∣∣∣∆u,i

∣∣∣+λ ∑
(u,i)∈ZK

 f∑
k=1

x2
u,k +

f∑
k=1

y2
i,k


if

∣∣∣∣∆u,i

∣∣∣∣ > 1

(6)

ẑ

where xu,k denotes the specific entity at the u-th row and k-th
column in X, yi,k denotes the specific entity at the i-th row and
k-th  column in Y,  and Δu,i is  the  prediction error  between zu,i
and u,i calculated as
 

∆u,i = zu,i− ẑu,i = zu,i−
f∑

k=1

xu,kyi,k. (7)

With  such  an  objective  function  of  (6),  we  next  check
whether  an  SL-LF  model  can  achieve  a  highly  robust  and
accurate prediction for the missing data of an HiDS matrix. 

B.  Model Optimization
As  analyzed  in  [13],  [15],  a  stochastic  gradient  descent

(SGD) algorithm has the advantages of  fast  convergence and
ease  of  implementation  in  optimizing  a  bilinear  objective.
Hence, we employ it to minimize (6) by training desired X and
Y.  First,  we consider the instant  loss of  (6)  on a single entity
zu,i:
 

εu,i =



(
∆u,i

)2
+λ

 f∑
k=1

x2
u,k +

f∑
k=1

y2
i,k

, if
∣∣∣∣∆u,i

∣∣∣∣ ≤ 1

∣∣∣∣∆u,i

∣∣∣∣+λ f∑
k=1

x2
u,k +

f∑
k=1

y2
i,k

, if
∣∣∣∣∆u,i

∣∣∣∣ > 1.

(8)

To solve (8) with SGD, we need to respectively move each
single  LF xu,k and yi,k along  the  opposite  of  the  stochastic
gradient of (8). To do so, we make
 

xu,k = xu,k −η
∂εu,i

∂xu,k

yi,k = yi,k −η
∂εu,i

∂yi,k

∀k ∈ {1,2, ..., f }

(9)

where η is  the  learning  rate.  Since  (8)  has  the  absolute
deviation term of |Δu,i|, there are a total of three situations for
(8) in computing (9) as follows: 

εu,i =



(
∆u,i

)2
+λ

 f∑
k=1

x2
u,k +

f∑
k=1

y2
i,k

, if
∣∣∣∣∆u,i

∣∣∣∣ ≤ 1

∆u,i+λ

 f∑
k=1

x2
u,k +

f∑
k=1

y2
i,k

, if ∆u,i > 1

−∆u,i+λ

 f∑
k=1

x2
u,k +

f∑
k=1

y2
i,k

, if ∆u,i < −1.

(10)

Then,  by  incorporating  (10)  into  (9),  we  have  the  training
rules  for  each  single  LF xu,k and yi,k respectively  on  a  single
entity zu,i as follows:
 

For zu,i ∀k ∈ {1,2, ..., f } :


xu,k = xu,k +ηyi,k∆u,i−ηλxu,k,

yi,k = yi,k +ηxu,k∆u,i−ηλyi,k,
if

∣∣∣∣∆u,i

∣∣∣∣ ≤ 1
xu,k = xu,k +ηyi,k −ηλxu,k,

yi,k = yi,k +ηxu,k −ηλyi,k,
if ∆u,i > 1

xu,k = xu,k −ηyi,k −ηλxu,k,

yi,k = yi,k −ηxu,k −ηλyi,k,
if ∆u,i < −1.

(11)

Ẑ
Ẑ

After all  the known entities in ZK are employed to train by
(11),  we  get  the  desired X and Y.  Finally, Z’s  rank-f
approximation , which can predict the missing data of Z,  is
obtained as =XYT. 

C.  Incorporating Linear Biases into SL-LF

ẑ

According  to  [14],  [27],  [28],  linear  biases  can  be
incorporated  into  an  LF  model  to  improve  its  prediction
accuracy.  Since  SL-LF  is  also  an  LF-based  model,  we  can
extend  it  with  linear  biases.  As  analyzed  in  [14],  [27],  [28],
linear  biases  commonly  include  the  global  average  and  the
observed  deviations  on  users  and  items.  With  them,  then,  an
SL-LF model approximates u,i as follows:
 

ẑu,i = µ+bu+bi+

f∑
k=1

xu,kyi,k (12)

where μ denotes the global average value in ZK, bu denotes the
observed  deviations  on  user u,  and bi denotes  the  observed
deviations on item i, respectively. Given an HiDS matrix Z, μ
is computed as follows:
 

µ =

∑
(u,i)∈ZK

ru,i

|ZK |
. (13)

After  that, bu and bi can be estimated in an easy way [27],
[28]:
 

bi =

∑
(u,i)∈Z(i)

(
ru,i−µ

)
θ1+ |Z(i)| , bu =

∑
(u,i)∈Z(u)

(
ru,i−µ−bi

)
θ2+ |Z(u)| (14)

where Z(i) denotes the known entities set in the i-th column of
Z, Z(u) denotes the known entities set in the u-th row of Z, θ1
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and θ2 denote the threshold constant and can be determined by
cross-validation [28]. Then, by incorporating linear biases into
SL-LF, (7) is changed into:
 

∆u,i = zu,i− ẑu,i = zu,i−µ−bu−bi−
f∑

k=1

xu,kyi,k. (15)

Finally, by combining (15) into (11), we can obtain the train-
ing rules for SL-LF with linear biases on a single entity zu,i. 

D.  Algorithm Design and Analysis

LFb̄
LFb̄

Cb̄

From  the  above  analyses,  we  see  that  SL-LF  has  two
versions, i.e., without and with linear biases. We respectively
name  SL-LF  without  and  with  linear  biases  as  SL-  and
SL-LFb.  First,  we  design  Algorithm  1 for  SL- ,  whose
computational complexity  can be derived as follows:
 

Cb̄ = Θ (1)+Θ (|U | × f )+Θ (|I| × f )

+Nmtr × (|ZK | × f ×2×Θ (1)+Θ (1))

≈ Θ (Nmtr × |ZK | × f ) (16)
<<where we drop the lower order terms due to (|U| + |I|) |ZK| in

real-world  applications.  Second,  we  design  Algorithm  2  for
SL-LFb,  whose  computational  complexity Cb can  be  derived
as follows:
 

Cb = Θ (1)+Θ (|U | × f )+Θ (|I| × f )+Θ (|ZK |)+Θ (|ZK |)
+Θ (|ZK |)+Nmtr × (|ZK | × f ×2×Θ (1)+Θ (1))

≈ Θ (Nmtr × |ZK | × f ) . (17)
LFb̄From (16)  and  (17),  we  see  that  SL-  and  SL-LFb have

the  same  computational  complexity.  The  maximal-training-
round  count Nmtr,  known  entity  count  |ZK|,  and  LF  space
dimension f are  crucial  in  deciding  their  computational
complexity.

Besides,  to implement SL-LFb,  we need the following data
structures: 1) two arrays with length |ZK| to cache training data
and  corresponding  predictions,  2)  an  array  with  length  |U|  to
cache observed deviations on users, 3) an array with length |I|
to  cache  observed  deviations  on  items,  4)  a  matrix  with  size
|U| × f to cache X, and 5) a matrix with size |I| × f to cache Y.
Thus, SL-LFb’s space complexity is
 

S B = 2 |ZK |+ |U |+ |I|+ |U | × f + |I| × f

≈ Θ
(

f ×max
{
|ZK |

f
, |U | , |I|

})
.

(18)
LFb̄Although  SL-  does  not  need  arrays  to  cache  linear

biases, it has the same space complexity as SL-LFb.
In  real-world  applications,  both Nmtr and f are  positive

constants.  Hence,  SL-LF’s  computational  and  space
complexity  is  linear  with  |ZK|,  which  is  highly  efficient  and
applicable to big data-related industrial applications. 

IV.  Experiments and Results
 

A.  General Settings
Datasets: Eight benchmark datasets are selected to conduct

the experiments. Table I summarizes their properties. They are
real  HiDS  datasets  generated  by  industrial  applications  and
frequently  adopted  by  prior  studies  [13],  [29].  Dating  is

collected by an online dating website LibimSeTi [30], Douban
is collected by Douban.com [13], [29], Eachmovie is collected
by  the  EachMovie  system  by  the  DEC  Systems  Research
Center [1], [31], Epinion is collected by Trustlet website [29],
Flixter  is  collected  by  the  Flixter  website  [32],  Jester  is
collected  by  the  joke-recommender  Jester  [32],  and
MovieLens_10M  and  MovieLens_20M  are  collected  by  the
MovieLens system [33].

LFb̄Algorithm 1 SL-

Input: ZK
Operation　　　　　　　　　　　　　　　　　　　Cost
initializing  f, λ, η, Nmtr (Max-training-round count)　 　Θ(1)
initializing X randomly　　　　　　　　　　　　　　Θ(|U|×f)
initializing Y randomly　　　　　　　　　　　　　 Θ(|I|×f)
while t ≤ Nmtr && not converge　　　　　　　　　 ×Nmtr
　for each entity zu,i in ZK　　　　　　　　　　　 ×|ZK|
　　for k=1 to f　　　　　　　　　　　　　　　 ×f
　　　computing xu,k according to (7) and (11)　　 Θ(1)
　　　computing yi,k according to (7) and (11)　　　 Θ(1)
　　end for　　　　　　　　　　　　　　　　　 −
　end for　　　　　　　　　　　　　　　　　　 −
　t=t+1　　　　　　　　　　　　　　　　　　 Θ(1)
end while　　　　　　　　　　　　　　　　　　 −
Output: X, Y

Algorithm 2 SL-LFb

Input: ZK
Operation　　　　　　　　　　　　　　　　　　　Cost
initializing  f, λ, η, Nmtr (Max-training-round count)　 　Θ(1)
initializing X randomly　　　　　　　　　　　　　　Θ(|U|×f)
initializing Y randomly　　　　　　　　　　　　　 Θ(|I|×f)
computing μ according to (13)　　　　　　　　　　 Θ(|ZK|)
for each entity zu,i in ZK　　　　　　　　　　　　 ×|ZK|
　　computing bi according to (14)　　　　　　　　　Θ(1)
end for　　　　　　　　　　　　　　　　　　　 −
for each entity zu,i in ZK　　　　　　　　　　　　 ×|ZK|
computing bu according to (14)　　　　　　　　　 Θ(1)
end for　　　　　　　　　　　　　　　　　　　 −
while t ≤ Nmtr && not converge　　　　　　　　　　×Nmtr
　 for each entity zu,i in ZK　　　　　　　　　　　 ×|ZK|
　　 for k=1 to f　　　　　　　　　　　　　　　 ×f
　　　computing xu,k according to (11) and (15)　　 Θ(1)
　　　computing yi,k according to (11) and (15)　　　 Θ(1)
　　end for　　　　　　　　　　　　　　　　　 −
　end for　　　　　　　　　　　　　　　　　　 −
　t=t+1　　　　　　　　　　　　　　　　　　 Θ(1)
end while　　　　　　　　　　　　　　　　　　 −
Output: X, Y

Evaluation  Metrics: Missing  data  prediction  is  a  common
but  important  task  in  representing  an  HiDS  matrix  [34].  To
evaluate prediction accuracy, mean absolute error (MAE) and
root mean squared error (RMSE) are widely adopted:
 

MAE =

 ∑
(u,i)∈Γ

∣∣∣zu,i− ẑu,i
∣∣∣
abs

/|Γ|
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RMS E =

√√√√ ∑
(u,i)∈Γ

(
zu,i− ẑu,i

)2

/|Γ|
where Γ denotes the testing set and |·|abs denotes the absolute
value  of  a  given  number.  Lower  MAE  and  RMSE  indicate
higher  missing data  prediction accuracy.  Besides,  to  evaluate
the  computational  efficiency  of  missing  data  prediction,  we
measure CPU running time.

Experimental  Designs: For  each  dataset,  its  80% known
data are used as a training dataset and the remaining 20% ones
as  a  testing  dataset.  Five-fold  cross-validations  are  adopted.
All the experiments are run on a PC with 3.4 GHz i7 CPU and
64  GB  RAM.  In  the  next  experiments,  we  aim  at  answering
the following research questions:

1) How do the hyper-parameters of an SL-LF model impact
its prediction performance?

2)  How  do  the  outlier  data  impact  the  prediction
performance of an SL-LF model?

3)  Does  the  proposed  SL-LF  model  outperform  related
state-of-the-art models? 

B.  Hyper-Parameter Sensitivity Tests

LFb̄

From Section III, we know that SL-LF has three parameters,
i.e.,  LF  space  dimension f,  regularization  parameter λ,  and
learning  rate η.  Next,  we  analyze  the  behaviors  of  SL-
(without  linear  biases)  and  SL-LFb (with  linear  biases)  with
respect to these parameters.

1) Impacts Off

LFb̄

This set of experiments increase f from 5 to 320. Figs. 2 and 3
record  the  results  on  D8.  The  complete  results  on  all  the
datasets are recorded in the Supplementary File1 of this paper.
From these  results,  we  find  that  the  larger f makes  both  SL-

 and SL-LFb have better representation learning ability on
most  cases,  which  benefits  for  achieving  a  higher  prediction
accuracy.  However,  such  prediction  accuracy  gain  slows
down when f is larger than a threshold, such as 20. Moreover,
we find exceptions that prediction accuracy decreases when f
increases  from  5  to  40  on  D4.  One  reason  may  be  that
underfitting is caused by such hyper-parameters.  Besides, the
larger f requires more computational cost  as analyzed in (16)
and  (17).  Hence, f should  be  set  appropriately  to  balance
prediction  accuracy  and  computational  cost  according  to  a
specific  task.  As  a  rule  of  thumb,  f is  usually  set  to  fall  into
10–20 [14], [15], [35].

2) Impacts of λ and η
In  this  set  of  experiments,  we  increase λ from  0.01  to  0.1

and η from 0.0001 to  0.01  by  performing  a  grid-based
search  [36]. Figs. 4 and 5 show  the  results  on  D8.  The
complete  results  on  all  the  datasets  are  presented  in  the
Supplementary File1. From them, we conclude that:
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LFb̄Fig. 4.     The experimental results of SL-  with respect to λ and η on D8,

where f = 20.
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Fig. 5.     The experimental results of SL-LFb with respect to λ and η on D8,
where f = 20.
 

 

TABLE I  
Properties of All the Datasets

No. Name |U| |I| |ZK| Density

D1 Dating 135 359 168 791 17 359 346 0.08%

D2 Douban 129 490 58 541 16 830 839 0.22%

D3 Eachmovie 72 916 1 628 2 811 718 2.37%

D4 Epinion 755 760 120 492 13 668 321 0.02%

D5 Flixter 147 612 48 794 8 196 077 0.11%

D6 Jester 24 983 100 1 186 324 47.49%

D7 MovieLens_10M 71 567 65 133 10 000 054 0.21%

D8 MovieLens_20M 138 493 26 744 20 000 263 0.54%
 

 

1https://pan.baidu.com/s/1o_8sKP0HRluNH1a4IWHW8w, Code: t3sw
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LFb̄Fig. 2.     The  training  process  of  SL-  with  different f on  D8,  where λ =

0.01 and η = 0.001.
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Fig. 3.     The  training  process  of  SL-LFb with  different f on  D8,  where λ =
0.01 and η = 0.001.
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LFb̄

LFb̄

a)  Both λ and η have  a  significant  impact  on  prediction
accuracy  of  both  SL-  and  SL-LFb.  As λ and η increase,
MAE and RMSE decrease at first and then increase in general.
For example, on D8, RMSE of SL-  decreases from 0.8116
to 0.7729 at the beginning. Then, it increases up to 0.8451 as λ
and η continue to increase.

b) λ and η have  different  situations  in  searching  their
optimal  values  on  the  tested  datasets.  On  the  different
datasets,  the  optimal  value  of η is  a  small  value  like  0.001.
However,  the  optimal  value  of λ is  different  for  the  different
datasets. It distributes in the range from 0.02 to 0.09. Hence, λ
should be carefully tuned on the target dataset. 

C.  Outlier Data Sensitivity Tests
In  this  section,  we  compare  an  SL-LF  model  with  a  basic

LF (BLF) model  when outlier  data  are  added to  the datasets.
BLF  is  modeled  based  on  the L2-norm-oriented Loss while
SL-LF  is  done  by  the  smooth L1-norm-oriented Loss.  The
specific  method  of  adding  outlier  data  is:  1)  randomly
selecting  an  unknown  entity  between  two  known  entities  as
the outlier  entity for  the input  HiDS matrix Z,  2)  assigning a
value  (maximum  or  minimum  known  value)  to  the  outlier
entity,  3)  the  percentage  that  outlier  entities  account  for
known entities is increased from 0% to 100% with an interval
of  10%,  and  4)  the  outlier  entities  are  only  added  into  the
training set.  To illustrate this method, an example is given in
Fig. 6.
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Fig. 6.     An example of adding outlier data.
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LFb̄

Fig. 7 records  the  experimental  results  on  D8.
Supplementary  File1 records  the  complete  results  on  all  the
datasets. Since smooth L1-norm is less sensitive to outlier data
than L2-norm, we find that  both SL-  and SL-LFb become
much more robust than BLF as the percentage of outlier data
increases.  For  example,  on  D8,  RMSEs  of  SL-  and  BLF
are 0.7767 and 0.7761, respectively when there are no outlier

LFb̄

data,  and then become 0.8536 and 1.1244, respectively when
the  percentage  of  outlier  data  is  100%.  The  improvement  of
RMSE of BLF is 0.3483, which is about 4.53 times as large as
that of SL-  at 0.0769. Therefore, we conclude that an SL-
LF model is robust to the outlier data.
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LFb̄Fig. 7.     The  outlier  data  sensitivity  tests  results  of  BLF,  SL- ,

and SL-LFb on D8, where λ = 0.01, η = 0.001, and f = 20.
  

D.  Comparison Between SL-LF and State-of-the-Art Models
We compare an SL-LF model with five related state-of-the-

art  models,  including  three  LF-based  models  (basic  latent
factor (BLF),  non-negative latent  factor (NLF),  and fast  non-
negative  latent  factor  (FNLF))  and  two  deep  neural  network
(DNN)-based  models  (AutoRec  and  deep  collaborative
conjunctive  recommender  (DCCR)). Table II gives  a  brief
introduction to these models. To make a fair comparison, f is
set as 20 for all the LF-based models and the proposed SL-LF
model. Besides, we tune the other hyper-parameters for all the
involved  models  to  make  them  achieve  their  highest
prediction accuracy.

1) Comparison of Prediction Accuracy

LFb̄

LFb̄

Table III presents the detailed comparison results. Statistical
analysis  is  conducted  on  these  comparison  results.  First,  the
win/loss  counts  of  SL- /SL-LFb versus  other  models  are
summarized  in  the  third/second-to-last  row  of Table III.
Second,  we  perform Friedman  test  [40]  on  these  comparison
results.  The  result  is  recorded  in  the  last  row  of Table III,
where it accepts the hypothesis that these comparison models
have significant  differences with a significance level  of  0.05.
From these comparisons and statistical results, we find that a)
both SL-  and SL-LFb achieve lower RMSE/MAE than the
other  models  on  most  testing  cases,  and  b)  SL-LFb achieves
the  lowest  F-rank  value  among  all  the  models.  Hence,  we
conclude  that  SL-LFb has  the  highest  prediction  accuracy

 

TABLE II  
Descriptions of All the Comparison Models

Model Description

BLF The basic LF model proposed in 2009 [14]. It has been extensively used in RSs.

NLF The regularized non-negative LF model proposed in 2016 [15]. It improves the L2-LF model by introducing the non-negative constraint into
objective function design.

FNLF A fast non-negative LF model based on generalized momentum proposed in 2018 [7]. It improves the NLF model.

AutoRec A DNN-based model proposed in 2015 [37]. It is an autoencoder [38] framework for CF. It is a representative model in DNN-based RSs.

DCCR A DNN-based model proposed in 2019 [39]. It improves AutoRec by using two different neural networks.

LFb̄SL- The proposed SL-LF model without linear biases.
SL-LFb The proposed SL-LF model with linear biases.
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among all the models.

LFb̄
LFb̄

Next,  we  check  whether  SL-LFb achieves  significantly
higher prediction accuracy than each single model.  To do so,
we  conduct  the  Wilcoxon  signed-ranks  test  [41],  [42]  on  the
comparison results of Table III. Wilcoxon signed-ranks test is
a nonparametric pairwise comparison procedure and has three
indicators – R+, R−,  and p-value.  The  larger R+  value
indicates  higher  performance  and  the p-value  indicates  the
significance level. Table IV records the test results, where we
see that SL-LFb has a significantly higher prediction accuracy
than  all  the  comparison  models  with  a  significance  level  of
0.05  except  for  SL- .  However,  SL-LFb achieves  a  much
larger R+ value than SL- , which verifies that linear biases
can boost an SL-LF model’s prediction accuracy.

2) Comparison of Computational Efficiency
To  compare  the  computational  efficiency  of  all  the  tested

models,  we  measure  their  CPU  running  times  on  all  the
datasets. Fig. 8 presents the results. From it, we observe that:

a)  DNN-based  models  (AutoRec  and  DCCR)  cost  much
more  CPU  running  time  than  the  other  models  due  to  their
time-consuming DNN-based learning strategy [43].

b) SL-LF costs slightly more CPU running time than BLF.
The  reason  is  that  SL-LF  has  the  additional  computational
procedures of discrimination (11) while BLF does not.

c)  SL-LF  costs  less  or  more  CPU  running  time  than  NLF
and FNLF on the different datasets.

Therefore,  these  results  verify  that  SL-LF’s  computational
efficiency  is  higher  than  those  of  DNN-based  models  and
comparable to those of other LF-based models. 

E.  Summary of Experiments
Based  on  the  above  experimental  results  and  analyses,  we

have the following conclusions:

 

TABLE III  

LFb̄ LFb

The Comparison Results on Prediction Accuracy, Including Win/Loss Counts Statistic and Friedman Test, Where ●and ✪
Respectively Indicate That SL- , and SL-  Have a Higher Prediction Accuracy Than Comparison Models

Dataset Metric BLF NLF FNLF AutoRec DCCR LFb̄SL- SL-LFb

D1
MAE 1.2392●✪ 1.2617●✪ 1.2588●✪ 1.2610●✪ 1.2574●✪ 1.1702 1.1686

RMSE 1.8066✪ 1.8245✪ 1.8215✪ 1.8027✪ 1.8013✪ 1.8275 1.7829

D2
MAE 0.5537●✪ 0.5590●✪ 0.5592●✪ 0.5606●✪ 0.5581●✪ 0.5516 0.5458

RMSE 0.7139●✪ 0.7150●✪ 0.7139●✪ 0.7080✪ 0.7074✪ 0.7094 0.6957

D3
MAE 0.1732●✪ 0.1767●✪ 0.1763●✪ 0.1784●✪ 0.1775●✪ 0.1731 0.1729

RMSE 0.2251● 0.2264●✪ 0.2259● 0.2305●✪ 0.2289●✪ 0.2242 0.2260

D4
MAE 0.3011●✪ 0.3047●✪ 0.3036●✪ 0.3014●✪ 0.3036●✪ 0.2967 0.2766

RMSE 0.5958✪ 0.5994●✪ 0.5977✪ 0.5946✪ 0.5952✪ 0.5992 0.4812

D5
MAE 0.6447●✪ 0.6550●✪ 0.6520●✪ 0.6295✪ 0.6308✪ 0.6348 0.6084

RMSE 0.8961●✪ 0.9056●✪ 0.9038●✪ 0.8682✪ 0.8792✪ 0.8949 0.8324

D6
MAE 0.7664●✪ 0.7769●✪ 0.7778●✪ 0.7905●✪ 0.7883●✪ 0.7552 0.7573

RMSE 0.9957✪ 1.0049●✪ 1.0003●✪ 1.0078●✪ 1.0042●✪ 0.9988 0.9936

D7
MAE 0.5999●✪ 0.6080●✪ 0.6068●✪ 0.6048●✪ 0.6002●✪ 0.5950 0.5980

RMSE 0.7819● 0.7893●✪ 0.7881● 0.7865● 0.7847● 0.7806 0.7887

D8
MAE 0.5886●✪ 0.5977●✪ 0.5961●✪ 0.5947●✪ 0.5902●✪ 0.5841 0.5857

RMSE 0.7737● 0.7819●✪ 0.7798●✪ 0.7802●✪ 0.7789● 0.7730 0.7790

Statistical analysis

● Win/Loss 13/3 15/1 14/2 11/5 11/5 – –

✪ Win/Loss 13/3 16/0 14/2 15/1 14/2 – –
F-rank* 3.281 6.313 5.125 4.813 3.969 2.625 1.875

* The smaller F-rank value denotes a higher prediction accuracy.
 

 

TABLE IV  
Statistical Results on Table III by Conducting the

Wilcoxon Signed-Ranks Test

Comparison R+ R− p-Value
SL-LFb vs. BLF 121 15 0.0033
SL-LFb vs. NLF 136 0 0.0002
SL-LFb vs. FNL 133 3 0.0004

SL-LFb vs. AutoRec 134 2 0.0004
SL-LFb vs. DCCR 131 5 0.0006

LFb̄SL-LFb vs. SL- 100 37 0.0544
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Fig. 8.     The comparison CPU running time of involved models on D1–D8.
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1)  An  SL-LF  model’s  prediction  accuracy  is  closely
connected  with λ and η.  As  a  rule  of  thumb,  we  can  set
η=0.001 while λ should be fine-tuned according to  a  specific
target dataset.

2)  SL-LF has  significantly  higher  prediction  accuracy  than
state-of-the-art  models  for  the  missing  data  of  an  HiDS
matrix.

3)  SL-LF’s  computational  efficiency  is  much  higher  than
those of DNN-based models and comparable to those of most
efficient LF-based models.

4) Linear biases have positive effects on improving SL-LF’s
prediction accuracy. 

V.  Related Work

An  LF  model  is  one  of  the  most  popular  and  successful
ways to efficiently predict the missing data of an HiDS matrix
[13],  [14].  Up  to  now,  various  approaches  are  proposed  to
implement an LF model, including a bias-based one [14], non-
negativity-constrained  one  [15],  randomized  one  [17],
probabilistic  one  [44],  dual-regularization-based  one  [45],
posterior-neighborhood-regularized  one  [16],  graph  regula-
rized one [18], neighborhood-and-location integrated one [6],
data  characteristic-aware  one  [35],  confidence-driven  one
[46], deep-latent-factor based one [47], and nonparametric one
[48]. Although they are different from one another in terms of
model  design  or  learning  algorithms,  they  all  adopt  an L2-
norm-oriented Loss,  making  them  sensitive  to  outlier  data
[20].  Since  outlier  data  are  frequently  found  in  an  HiDS
matrix [24], [25], their robustness cannot be guaranteed.

To  make  an  LF  model  less  sensitive  to  outlier  data,  Zhu
et  al. [19]  proposed  to  adopt  an L1-norm-oriented Loss.
However, such an LF model is multimodal because L1 norm is
less smooth than L2 norm, as shown in Fig. 1(a). Hence, an LF
model  with  an L1 norm-oriented Loss tends  to  be  stacked  by
some “bad” solutions,  resulting  in  its  failure  to  achieve  high
prediction  accuracy.  Differently  from  these  approaches,  the
proposed SL-LF model adopts smooth L1-norm-oriented Loss,
making its  solution space smoother and less multimodal than
that of an LF model with L1 norm-oriented Loss.  Meanwhile,
its robustness is also higher than that of an LF model with L2
norm-oriented Loss.

Recently,  DNN-based  approaches  to  represent  an  HiDS
matrix have attracted extensive attention [49]. According to a
recent  review  regarding  DNN-based  studies  [34],  various
models  are  proposed  to  address  the  task  of  missing  data
prediction for an HiDS matrix. Representative models include
an  autoencoder-based  model  [37],  hybrid  autoencoder-based
model  [39],  multitask  learning  framework  [50],  neural
factorization  machine  [51],  attentional  factorization  machine
[52], deep cooperative neural network [53], and convolutional
matrix  factorization  model  [54].  However,  DNN-based
models  have  the  limit  of  high  computational  cost  caused  by
their learning strategies. For example, they take complete data
rather  than  known  data  of  an  HiDS  matrix  as  input.
Unfortunately,  an  HiDS  matrix  generated  by  RSs  commonly
has  a  very  low  rating  density.  In  comparison,  SL-LF  trains
only on the known data of an HiDS matrix, thereby achieving
highly computational efficiency.

As analyzed in [13], [16], an LF model can not only predict
the missing data of an HiDS matrix but also be used as a data
representation  approach.  Hence,  SL-LF  has  some  potential
applications  in  representation  learning,  such  as  community
detection,  autonomous  vehicles  [5],  and  medical  image
analysis  [55]–[57].  Besides,  some  researchers  incorporate
non-negative  constraints  into  an  LF  model  to  improve  its
performance  [17].  Similarly,  we  plan  to  improve  SL-LF  by
considering non-negative constraints [58] in the future. 

VI.  Conclusions

This  study  proposes,  for  the  first  time,  a  smooth L1-norm-
oriented  latent  factor  (SL-LF)  model  to  robustly  and
accurately predict the missing data of a high-dimensional and
sparse  (HiDS) matrix.  Its  main idea is  to  employ smooth L1-
norm rather than L2-norm to form its Loss (the error between
observed  data  and  predicted  ones),  making  it  achieve  highly
robust  and  accurate  prediction  of  missing  data  in  a  matrix.
Extensive experiments on eight HiDS matrices from industrial
applications  are  conducted  to  evaluate  the  proposed  model.
The  experimental  results  verify  that  1)  it  is  robust  to  the
outlier  data,  2)  it  significantly  outperforms  state-of-the-art
models in terms of prediction accuracy for the missing data of
an  HiDS matrix,  and 3)  its  computational  efficiency is  much
higher  than  those  of  DNN-based  models  and  comparable  to
those  of  most  efficient  LF  models.  Although  it  has  shown
promising prospects, how to make its hyper-parameter λ self-
adaptive  and  improve  its  performance  by  considering  non-
negative constraint remains open. We plan to fully investigate
these issues in the future.
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