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a b s t r a c t 

Having a multitude of unlabeled data and few labeled ones is a common problem in many practical ap- 

plications. A successful methodology to tackle this problem is self-training semi-supervised classification. 

In this paper, we introduce a method to discover the structure of data space based on find of density 

peaks. Then, a framework for self-training semi-supervised classification, in which the structure of data 

space is integrated into the self-training iterative process to help train a better classifier, is proposed. 

A series of experiments on both artificial and real datasets are run to evaluate the performance of our 

proposed framework. Experimental results clearly demonstrate that our proposed framework has better 

performance than some previous works in general on both artificial and real datasets, especially when the 

distribution of data is non-spherical. Besides, we also find that the support vector machine is particularly 

suitable for our proposed framework to play the role of base classifier. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Supervised learning (classification) is an active research prob-

lem in data mining and machine learning. So far, it has been

widely used in power system protection, biological medicine, face

recognition, image processing, and object detection, etc [1–6] . Su-

pervised learning relies on the samples with class labels to train

a good classifier, through which class labels can be provided for

new samples. However, due to extensive expert effort along with

time consumption of data labeling, it is hard to obtain sufficient la-

beled data. On the contrary, unlabeled data are often abundant in

the real world. Consequently, having a multitude of unlabeled data

and few labeled ones occurs quite often in many practical appli-

cations. In this scenario, traditional supervised learning often fails

to learn an appropriate classifier with labeled data only [7] . Never-

theless, semi-supervised classification (SSC) is a learning paradigm

concerned with finding a way to improve supervised learning by

using unlabeled data [8–10] . Hence, in this type of learning, it is

not necessary to label all the collected data for training the classi-

fier. 
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Various approaches of SSC have been proposed and studied all

ver the world. They are usually classified depending on the dif-

erent assumptions related to the link between the distribution of

nlabeled and labeled data. General models are based on mani-

old and /or cluster assumption. If data correspond approximately

o a manifold of lower dimensionality than the input space, it is

uitable for manifold assumption [11] . The most common man-

fold assumption based models are the graph min-cut problems.

he graph construction determines the behavior of the models be-

ause two instances connected by a strong edge likely have same

abels [12] . The cluster assumption supposes that similar exam-

les should have the same labels. In this case, generative models

13] or support vector machines based models [14] are proposed

o achieve SSC. Recently, multiple assumptions in one model have

lso been addressed by some researchers [15–17] . 

A successful methodology to tackle SSC problems is self-labeled

echniques, which take advantage of a supervised classifier to label

nstances with unknown class and do not make any specific suppo-

itions about input data [10] . Self-labeled techniques include two

ell-known methodologies: co-training and self-training. The stan-

ard co-training [18] considers the feature space to be two differ-

nt conditionally independent views. Each view is able to train one

lassifier and then teach each other to predict the classes perfectly

19,20] . In addition, advanced approaches for co-training are multi-

http://dx.doi.org/10.1016/j.neucom.2017.05.072
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.05.072&domain=pdf
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mailto:wanggy@ieee.org
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Fig. 1. Illustration of misclassification of using semi-supervised FCM algorithm to 

improve self-training SSC. 
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iew learning, which does not require explicit feature splits or the

terative mutual-teaching procedure [21–23] . Self-training, as the

ame implies, attempts to iteratively enlarge the labeled training

et [24] . To begin with, a classifier is trained with initial labeled

ata. Then, unlabeled data, which are selected with the highest

onfidence, are added incrementally into the labeled training set

ith their predicted labels. The procedure is repeated until con-

ergence. Self-training has been successfully applied to many real

pplications, such as word sense disambiguation [25] and subjec-

ive nouns [26] . 

However, self-training method is limited by the number of la-

eled data and their distribution. When the labeled data cannot

oughly represent the underlying structure of the entire data space,

he training process will fail to approach the real data space and

btain a bad classifier. Adankon and Cheriet developed an im-

roved version of self-training, called help-training, to train the

ain discriminative classifier by using a generative model [27] .

ut, the problems existed in self-training have also not been solved

undamentally because the generative model was trained only by

abeled data. Thus, Gan et al. proposed that using semi-supervised

uzzy c-means (FCM) algorithm to improve self-training, where un-

abeled data and labeled data were exploited to reveal the ac-

ual data space structure through clustering analysis [28] . Never-

heless, Gan’s algorithm is not appropriate for the non-spherical

istribution of data, which occurs quite often in the real world.

ig. 1 shows an example that Gan’s algorithm may not find the

eal decision boundary. In this case, since the semi-supervised

CM algorithm cannot discover the real data space structure of

on-spherical distribution of data, unlabeled samples distributed

earby initial labeled samples have been chosen to reduce the per-

ormance of classifier obtained by training. 

Recently, Rodriguez and Laio achieved a density peaks cluster-

ng algorithm, published on the famous journal of Science, to de-

ect non-spherical clusters and to automatically find the correct

umber of clusters [29] . For each data point x i , this clustering al-

orithm computed two quantities: its local density and its distance

rom points of higher local density. By researching the two quanti-

ies, we found that the real structure of entire data space, no mat-

er spherical or non-spherical distribution of data, can be discov-

red by making each data point x i points to its nearest point with

igher local density. This result inspired us to further research on

SC. Thus, in this paper, we propose a framework for self-training

SC based on find of density peaks. Our proposed framework con-
ists of two main parts: one part is discovering the real structure

f entire data space by searching and finding density peaks of data;

he other part is integrating the real structure of entire data space

nto the self-training process to iteratively train a classifier. Our

roposed framework has three advantages: (a) it is not limited by

he distribution of initial labeled data and entire data space; (b) it

s a constructive model without prior conditions; (c) it is suitable

or any supervised algorithm to improve its performance by using

he abundant unlabeled data. The main contributions of this work

nclude: 

a) The proposed framework for self-training SSC, which is able to

improve the performance of a supervised algorithm by using

the abundant unlabeled data. 

b) Detailed algorithm design and analysis for the proposed frame-

work. 

c) Detailed empirical studies conducted on both artificial and real

datasets, along with analyses regarding the experimental re-

sults. 

To the authors’ best knowledge, such effort s have never been

een in any prior work. 

The rest of the paper is organized as follows: in Section 2 , we

ntroduce the method to discover structure of data space based on

nd of density peaks; in Section 3 , we describe our framework

nd algorithm; in Section 4 , we discuss the experimental results

n both artificial and real datasets, and in Section 5 , we conclude

his paper and make some plans for the future. 

. Discovering the structure of data space based on find of 

ensity peaks 

Clustering is an important unsupervised method for analyzing

nlabeled data [30] and can find the underlying structure of data

pace [28] . As mentioned in [29] , a density peaks clustering algo-

ithm was demonstrated based on the idea that cluster centers are

haracterized by a higher density than their neighbors and by a

elatively large distance from points with higher densities. It has

he basis that the similarity between data points is evaluated by

he distance measurement. In other word, if two data points have

he closer distance, they are more similar. For each data point x i ,

he local density ρ i is defined as: 

i = 

∑ 

j 

χ( d i j − d c ) , χ(x ) = 

{
1 , x < 0 

0 , others 
(1)

here d ij is distances between data points x i and x j , and d c is a

utoff distance without a fixed value. Obviously, ρ i indicates the

umber of points that are closer than d c to point x i . δi is the min-

mum distance between x i and any other point with higher local

ensity than ρ i : 

i = 

{
min j: ρi < ρ j 

( d i j ) , others 

max j ( d i j ) , ∀ j, ρi ≥ ρ j 

(2) 

In the process of calculating δi , each data point x i has a corre-
ponding data point x j , which is x i ’s nearest point with higher lo-

al density. Thus, for each data point x i , it is characterized by three
uantities: ρ i , δi , and x j . By making each data point x i points to its

orresponding data point x j , the real structure of entire data space,

o matter spherical or non-spherical distribution of data, can be
iscovered. This observation, which is the core of our framework,

s illustrated by the simple example in Fig. 2 . Firstly, 30 artificial
ata points ( x 1 , x 2 , …, x 30 ) with two classes are randomly gener-
ted as the follow conditional distributions: 

Class 1 : x i ( a, b ) , [ ( a, b ) | a = N ( 10 , 0 . 3 ) , b = N ( 10 , 3 ) ] , i = 1 , 2 , . . . , 15 . 

Class 2 : x i ( a, b ) , [ ( a, b ) | a = N ( 14 , 0 . 3 ) , b = N ( 10 , 3 ) ] , i = 16 , 17 , . . . , 30 . 

(3) 

wudi
高亮
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Fig. 2. Illustration of discovering data space: (a) distribution of data points, (b) real 

structure of entire data space. 
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where N(μ, σ 2 ) is normal distribution with mean μ and variance

σ 2 . Fig. 2 (a) shows the distribution of 30 artificial data points gen-

erated as formula ( 3 ). Next, according to formulas ( 1 ) and ( 2 ), we

compute the three quantities ( ρ i , δi , and x j ) for 30 artificial data

points, respectively. Finally, making each data point x i points to its

corresponding data point x j . Consequently, the real structure of en-

tire data space is discovered, as shown in Fig. 2 (b). Note that each

data point x i points to its unique next data point x j in one-way

successively until the data point with highest local density. For

example, the sequenced relationships of data points x 28 , x 16 , x 25 ,

and x 14 are: x 28 points to x 16 , x 16 points to x 25 , and x 25 points to

x 14 .The data point x 14 has the highest local density. In the Section

4.5 , we will discuss the selection rules of d c . 

As discussed above, the real structure of entire data space, no

matter spherical or non-spherical distribution of data, can be well

discovered by computing the two quantities of ρ i , δi , for each data

point x i . In addition, the discovering of the real structure of en-

tire data space is extremely fast because it has no iterative process.

All the advantages are very suitable for the self-training SSC. Thus,

we choose the density peaks clustering algorithm to discover the
Fig. 3. Flowchart of our p
eal structure of entire data space and achieve our proposed frame-

ork. 

. Our framework and algorithm 

In this section, our proposed framework for self-training SSC is

escribed, in which the structure of data space discovered by find-

ng the density peaks of data is integrated into the self-training

rocess to iteratively train a classifier. The formal definition of the

SC problem is described as follows: x i = (x 1 
i 
, x 2 

i 
, . . . , x d 

i 
, ω) , which

s a sample that belongs to a class ω and a d -dimensional space. x d 
i 

s the value of the d th feature of the i th sample. L is labeled set

ith ω known and U is unlabeled set with ω unknown. The L ∪ U

et forms the training set T R . In particular, the number of initial

nlabeled data is much larger than that of initial labeled data for

 typical SSC problem. The aim of SSC is to learn a better classifier

 by using T R instead of L . 

Fig. 3 depicts the flowchart of our proposed framework. Step 1,

nd of density peaks of data is employed to learn the underlying

tructure of entire data space on the T R . Next, the structure of en-

ire data space is integrated into the self-training process to itera-

ively train a classifier, which consists of two similar steps. Step 2:

a) a classifier C is trained based on the L ; (b) the unlabeled data,

hich are the “next” points of labeled data according to the struc-

ure of entire data space, are then classified by the classifier C ; (c)

hese unlabeled data with their predicted labels are added into L

nd are subtracted from U . At the same time, updating L and U ; (d)

epeating the operations a to c until all the “next” unlabeled data

oints of labeled data are added into L and are subtracted from U .

tep 3: This step has the similar 4 operations, the only difference

etween step 2 and step 3 is the operation b , which means that

he “previous” unlabeled data points of labeled data, not the “next”

nlabeled data points of labeled data, are selected to be classified

y the classifier C . Here the notions of "next" and "previous" are

nly used based on the structure of data space discovered by step

. For example in Fig. 2 (b), if the data point x 16 is the labeled data

nd the other data points are unlabeled data, then the “next” un-

abeled data point of x 16 is x 25 , and the "previous" unlabeled data

oint of x is x . After that, a better classifier C is obtained. 
16 28 

roposed framework. 
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Table 1 

Summarizes the properties of all the experimental datasets. 

Name #Examples #Attributes( d ) #Classes 

Gauss50 20 0 0 50 2 

Gauss50x 20 0 0 50 2 

Banknote authentication 1372 4 2 

Waveform 50 0 0 21 3 
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Note that any supervised algorithm, like support vector ma-

hine (SVM) [31] , k-nearest neighbor (KNN) [32] , and classification

nd regression tree (CART) [33] , can be used as the classifier C

n our proposed framework. The specific algorithm pseudo-code of

ur proposed framework is outlined in Algorithm 1 . Note that our

roposed framework is different from [28] . Gan et al. [28] used

emi-supervised FCM algorithm to learn the underlying structure

f data space, which is not appropriate for the non-spherical distri-

ution of data. Nevertheless, our proposed framework exploits the

nd of density peaks to reveal the actual structure of entire data

pace, no matter spherical or non-spherical distribution of data.

hus, the classifier trained by our proposed framework has better

erformance than that trained by the [28] . We will discuss this in

ection 4.3 . 

In order to evaluate the performance of Algorithm 1 , a test set

 S composed of t number of instances x i with ω known is used for

he test stage. Three quantities of the accuracy rate ( AR ), the mean

ccuracy rate ( MAR ), and the standard deviation of AR ( SD- AR ), are

espectively computed as: 

R = 

1 

t 

t ∑ 

i =1 

ψ(ω, f ( x i )) , ψ(ω, f ( x i )) = 

{ 

1 ,i f ω= f ( x i ) 
0 ,else 

(4)

AR = 

1 

n 

n ∑ 

k =1 

A R k (5) 

D − AR = 

√ 

1 

n 

n ∑ 

k =1 

(A R k − MAR ) 
2 

(6) 

here f ( x i ) is the calculate label of x i , and n is the repeated

imes of computing AR. MAR represents the classification ability of

lgorithm 1 , SD-AR represents the robustness of Algorithm 1 . 

. Experimental results and discussions 

In the experiments, two artificial datasets and two real datasets

re used to test the performance of our algorithm. The properties

f these datasets are shown in Table 1 . 

.1. Artificial datasets 

Two artificial datasets, Gauss50 and Gauss50x, are generated

ike the ways used in [27,28] . They are a two-class problem in a

0-dimensional input space. For Gauss50, each class is generated

ith equal probability from a Gaussian distribution with a unit
Algorithm 1. 

Input: L = a labeled dataset, U = an unlabeled dataset 

Output: A classifier C 

Method: 

1. Calculate ρ i for each sample x i of L and U according to Formula ( 1 ) 

2. Calculate δi for each sample x i of L and U according to Formula ( 2 ) 

3. Establish the structure of data space by making each sample x i points to 

4. Train the classifier C with L 

5. Repeat until all the “next” points of samples of L are selected from U 

-Select a dataset T from U , where each sample x j is the “next” points of

-Label the samples of T with the trained classifier C 

-Update the current labeled dataset L ← L ∪ T 
-Update the current unlabeled dataset U ← U - T 

-Retrain the classifier C with L 

6. Repeat until all the samples are selected from U 

-Select a dataset T from U , where each sample x j is the “previous” point

-Label the samples of T with the trained classifier C 

-Update the current labeled dataset L ← L ∪ T 
-Update the current unlabeled dataset U ← U - T 

-Retrain the classifier C with L 

7. Return the classifier C 
ovariance matrix. The means of the Gaussian are (0.23, 0.23, …,

.23) for class 1 and ( −0.23, −0.23, …, −0.23) for class 2. For

auss50x, each class is generated with equal probability from a

aussian mixture distribution. The data in each class have the con-

itional distributions as follow: 

p(x | y = 1) = 0 . 49 N( μ1 , I) + 0 . 51 N( μ2 , I) 
p(x | y = −1) = 0 . 49 N(−μ1 , I) + 0 . 51 N(−μ2 , I) 

(7) 

here μ1 = (0.25, 0.25, …, 0.25), μ2 = (0.25, 0.25, …, 0.25, −0.25,

0.25, …, −0.25), N(μ, I) is a Gaussian distribution with mean μ

nd unit covariance matrix. 

.2. Real datasets 

Two real datasets from the UCI dataset [34] , Banknote Authen-

ication and Waveform, are tested in the experiments. Banknote

uthentication consists of 1372 samples in a 4-dimensional input

pace with 2 classes. Waveform is composed of 50 0 0 samples in a

1-dimensional input space with 3 classes. 

.3. Comparisons between our algorithm and some previous works 

In order to compare our algorithm with some previous

orks, two representative self-labeled SSC algorithms, i.e., semi-

upervised FCM [28] and semi-supervised Tri-training [39] , are

hosen to run the experiments. Semi-supervised FCM and semi-

upervised Tri-training respectively represent the methodologies of

elf-training and co-training of self-labeled SSC. Note that all the

hree self-labeled SSC algorithms (two chosen and our algorithm)

re suitable for any supervised algorithm, thus, the supervised al-

orithms of SVM, KNN, and CART are respectively used as the base

lassifier for them to test their performances. Table 2 summarizes

ll the parameters used in these algorithms. 

In the experimental phase, we use the 10-fold cross-validation

trategy to determine the final experimental results. Firstly, each

ataset is split into ten folds, and each one contains 10% of the

nstances of each dataset. Then, 9 folds are selected to use as the
its unique nearest sample with higher ρ i according the results of step 2 

 samples of L according to the structure of data space 

s of samples of L according to the structure of data space 
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Table 2 

Descriptions of all the parameters used in the experiments. 

Mark Algorithm Parameters 

/ SVM LIBSVM: all the parameters are set as default values [31] . 

/ KNN Number of neighbors = 3. 

/ CART MATLAB2014: all the parameters are set as default values . 

A1 Semi-supervised Tri-training 

A2 Semi-supervised FCM Threshold ε1 = 1/ (the number of classes). 

Our-A Our algorithm P a = 2, please refer to Section 4.5 , formula ( 8 ) 

Fig. 4. The point distributions of datasets of: (a) Gauss50, (b) Gauss50x, (c) Banknote authentication, and (d) Waveform. 
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training set T R and the remaining one forms the testing set T S . Af-

ter that, the T R is then divided into labeled part L and unlabeled

part U by using a random stratified selection, which means that

the selected number of instances for each class is proportional to

the number of them in the T R . In addition, we will ensure that at

least one representative instance of each class is selected in the L .

Thus, each dataset is divided into three parts: L, U , and T S ( L and

U form T R ). To make sure each fold can serve as the T S once, the

above steps will be executed ten times. Specifically, an initial ratio

10% of labeled data is adopted over the whole datasets. The com-

parison results are shown in Tables 3 –6 . 

From Tables 3 –6 , we observe that all the three self-labeled SSC

algorithms give better results than supervised algorithm in general,

which means that unlabeled data can improve the generalization

capacity of the supervised algorithm. In addition, we also find that

our algorithm has the best performances on the three datasets of

Gauss50, Gauss50x, and banknote authentication in general. In or-
er to further analyze the experimental results of Tables 3 –6 , we

erform the Friedman test [40] with the significance level α = 0.05

o conduct the statistical analysis and the accepted hypotheses are

ighlighted in bold. The results are recorded in Table 7 , where the

igher average value of rankings indicates the better performance

nd the maximum values of each column are highlighted in bold. 

As shown in Table 7 , when the supervised algorithms of SVM

nd KNN are used as the base classifier, the statistical results ac-

ept the hypothesis that our algorithm has the best performances

n datasets of Gauss50, Gauss50x, and banknote authentication ex-

ept for the case of on Gauss50x with supervised algorithm KNN.

owever, the p -value of 0.190 also reflects that our algorithm has

lightly better performances than the others on the exceptional

ase. When the supervised algorithm CART is used as the base

lassifier, although our algorithm is not the best algorithm, it also

as slightly better performances than any supervised algorithm on

atasets of Gauss50, Gauss50x, and Banknote Authentication. 
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Table 3 

Experimental results of comparisons with 10-fold cross-validation: accuracy rate (%) on Gauss50. 

10-fold cross- validation SVM KNN CART 

SVM A1 with SVM A2 with SVM Our-A with SVM KNN A1 with KNN A2 with KNN Our-A with KNN CART A1 with CART A2 with CART Our-A with CART 

#1 92.50 91.00 93.50 93.50 81.50 82.50 82.00 85.50 70.50 71.00 69.00 72.00 

#2 94.00 93.00 94.00 94.50 83.00 85.50 82.00 88.00 67.50 70.50 70.00 69.00 

#3 92.00 92.00 94.00 93.50 81.00 80.50 80.50 82.50 67.50 63.50 71.50 67.00 

#4 93.00 94.00 93.50 94.50 81.50 81.00 82.50 84.00 64.50 65.50 61.00 67.00 

#5 94.50 95.00 94.50 95.00 83.50 84.50 85.00 90.50 68.00 67.00 69.00 72.00 

#6 89.00 93.00 92.50 92.50 81.00 81.50 86.00 85.50 63.00 61.00 64.50 64.50 

#7 95.50 96.00 97.00 96.50 87.50 87.50 85.00 88.50 67.50 66.00 65.00 70.00 

#8 94.00 96.50 96.00 96.00 86.00 86.00 84.00 79.00 62.50 62.00 60.50 56.00 

#9 92.00 93.50 92.50 94.50 83.50 83.50 82.50 85.00 60.50 60.50 62.00 65.00 

#10 92.00 93.00 92.50 94.50 87.50 87.50 85.50 88.50 70.50 74.00 69.50 67.50 

MAR 92.85 93.70 94.00 94.50 83.60 84.00 83.50 85.70 66.20 66.10 66.20 67.00 

SD-AR 1.81 1.72 1.51 1.18 2.56 2.60 1.84 3.38 3.41 4.57 4.09 4.65 

Table 4 

Experimental results of comparisons with 10-fold cross-validation: accuracy rate (%) on Gauss50x. 

10-fold cross- validation SVM KNN CART 

SVM A1 with SVM A2 with SVM Our-A with SVM KNN A1 with KNN A2 with KNN Our-A with KNN CART A1 with CART A2 with CART Our-A with CART 

#1 92.00 92.00 93.00 93.00 88.00 88.00 85.00 85.00 66.50 69.50 69.00 70.00 

#2 92.50 93.50 93.50 95.00 84.50 84.50 80.50 87.00 74.00 70.00 73.00 70.50 

#3 95.50 96.00 98.50 99.00 86.50 86.00 87.50 87.50 71.00 69.50 71.50 76.50 

#4 94.50 96.50 96.50 95.50 90.50 91.50 90.50 86.00 67.00 76.00 68.00 62.00 

#5 88.50 90.00 93.50 93.50 85.00 84.00 85.00 86.50 63.00 69.00 62.50 62.50 

#6 95.50 94.00 95.00 96.00 86.50 86.50 87.50 87.00 67.00 74.00 64.50 70.50 

#7 92.50 93.50 94.50 95.00 87.00 87.50 89.00 94.00 73.00 73.50 75.00 71.50 

#8 96.00 95.50 96.50 94.00 84.00 83.50 90.50 90.00 69.00 72.00 67.50 71.00 

#9 94.50 94.50 93.50 95.00 87.50 88.00 85.50 89.00 70.00 71.50 69.00 71.00 

#10 94.00 94.50 95.00 95.00 84.00 86.00 90.00 88.00 69.50 73.50 68.50 71.50 

MAR 93.55 94.00 94.95 95.10 86.35 86.55 87.10 88.00 69.00 71.85 68.85 69.70 

SD-AR 2.25 1.93 1.76 1.65 2.06 2.36 3.17 2.55 3.27 2.36 3.71 4.33 



1
8

6
 

D
.
 W

u
 et

 a
l.
 /
 N

eu
ro

co
m

p
u

tin
g
 2

7
5
 (2

0
18

)
 18

0
–

19
1
 

Table 5 

Experimental results of comparisons with 10-fold cross-validation: accuracy rate (%) on banknote authentication. 

10-fold cross- validation SVM KNN CART 

SVM A1 with SVM A2 with SVM Our-A with SVM KNN A1 with KNN A2 with KNN Our-A with KNN CART A1 with CART A2 with CART Our-A with CART 

#1 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 87.59 89.78 87.59 85.40 

#2 98.54 98.54 98.54 99.27 99.27 10 0.0 0 99.27 10 0.0 0 91.24 93.43 90.51 91.24 

#3 98.54 99.27 97.81 99.27 98.54 98.54 98.54 98.54 85.40 85.40 85.40 86.13 

#4 97.08 99.27 97.08 98.54 99.27 99.27 99.27 99.27 89.05 92.70 89.05 89.78 

#5 99.27 98.54 97.08 10 0.0 0 98.54 97.08 98.54 10 0.0 0 93.43 95.62 93.43 93.43 

#6 97.81 97.81 99.27 99.27 97.08 97.08 96.35 98.54 83.94 86.86 83.21 89.78 

#7 97.81 98.54 98.54 98.54 99.27 99.27 99.27 99.27 95.62 97.81 95.62 96.35 

#8 94.16 94.16 94.16 94.89 98.54 10 0.0 0 98.54 10 0.0 0 97.08 93.43 96.35 94.16 

#9 95.62 96.35 98.54 98.54 99.27 10 0.0 0 99.27 99.27 91.24 94.16 94.16 90.51 

#10 99.28 97.12 10 0.0 0 10 0.0 0 97.84 97.84 97.84 98.56 92.81 94.96 91.37 94.24 

MAR 97.81 97.96 98.10 98.83 98.76 98.91 98.69 99.35 90.74 92.42 90.67 91.10 

SD-AR 1.79 1.71 1.73 1.51 0.84 1.20 1.02 0.64 4.26 3.92 4.38 3.55 

Table 6 

Experimental results of comparisons with the 10-fold cross-validation: accuracy rate (%) on Waveform. 

10-fold cross- validation SVM KNN CART 

SVM A1 with SVM A2 with SVM Our-A with SVM KNN A1 with KNN A2 with KNN Our-A with KNN CART A1 with CART A2 with CART Our-A with CART 

#1 85.60 85.40 85.80 87.00 81.53 81.53 80.12 81.33 69.80 70.80 69.20 69.60 

#2 84.00 84.00 85.00 83.40 78.64 78.64 78.24 79.44 70.20 69.20 70.60 71.00 

#3 81.80 82.40 82.60 83.00 82.44 82.63 80.44 78.44 70.00 69.40 68.80 69.20 

#4 81.80 82.20 81.60 80.60 75.90 75.90 77.51 76.51 66.60 70.40 66.80 67.20 

#5 85.00 85.00 84.60 85.80 78.84 78.64 78.84 76.45 63.80 65.80 63.60 69.00 

#6 83.80 83.80 85.40 85.20 79.24 79.24 81.24 74.65 74.20 73.80 73.80 73.00 

#7 86.40 86.20 86.00 85.40 79.72 79.72 83.94 79.12 69.60 69.40 70.20 68.60 

#8 88.60 88.80 90.20 88.20 81.64 81.64 81.04 79.24 65.20 70.80 66.00 65.60 

#9 84.20 84.20 85.00 85.00 82.04 82.04 79.24 78.44 68.80 71.40 69.40 63.80 

#10 85.60 85.60 85.60 87.40 79.20 79.20 80.00 76.00 74.20 74.60 73.60 71.00 

MAR 84.68 84.76 85.18 85.10 79.92 79.92 80.06 77.96 69.24 70.56 69.20 68.80 

SD-AR 2.06 1.93 2.27 2.28 2.01 2.05 1.81 2.00 3.40 2.47 3.18 2.71 
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Fig. 5. Test MAR of our algorithm and supervised SVM with respect to the ratio of labeled data on different datasets: (a) Gauss50, (b) Gauss50x, (c) Banknote authentication, 

and (d) Waveform. 
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We find that the self-labeled SSC algorithms fail to improve

he generalization capacity of the supervised algorithm on dataset

aveform, even our algorithm has the worst performances. In or-

er to analyze the reasons, non-classical forms of multidimensional

caling is used to visualize the dissimilarity data to reveal the dis-

ribution of the four datasets [29] . As can be seen from Fig. 4 , the

ata with different classes can be distinguished by the distribution

harts on datasets of Gauss50, Gauss50x, and banknote authenti-

ation. By contrast, the dataset of Waveform has large amounts

f strongly overlapping data, which is not suitable for the basis

hat the similarity between data points is evaluated by the distance

easurement. Thus, we cannot distinguish the data with different

lasses in the overlapping area by the distribution charts. This may

e the reason that our algorithm has the worst performances on

ataset Waveform. 

In summary, we conclude that our algorithm is more effec-

ive than semi-supervised Tri-training and semi-supervised FCM to

mprove the performance of a supervised algorithm on datasets

auss50, Gauss50x, and banknote authentication. We believe the

eason is that our algorithm is more appropriate for the non-

pherical distribution data than the other two self-labeled SSC al-

orithms. Especially, our algorithm with supervised algorithm SVM

as the better performance than that with supervised algorithm

NN or CART. We analyze the reason may be that the learning

trategy of our algorithm, which iteratively learn a classifier based

n the structure of data space discovered by finding the density

eaks of data, is similar with the SVM’s principle of structural risk

inimization. Besides, we also find that our algorithm may lose
 o  
ts efficacy under the situation of dataset with large amounts of

trongly overlapping data, like dataset waveform. 

.4. Impact of the ratio of labeled data 

We also discuss the behavior of our algorithm with respect to

he ratio of labeled data. We designed the experiments to com-

are our algorithm with supervised algorithm SVM. Fig. 5 shows

he results when we increase the initial ratio of labeled data from

0% to 100%. 10-fold cross-validation strategy is also used to deter-

ine the final experimental results. As shown in Fig. 5 , the MAR of

he two algorithms increases as the ratio of labeled data increases

ecause more labeled data are used to train the classifier. Gener-

lly, our algorithm achieves the higher MAR than the supervised

lgorithm SVM. Moreover, our algorithm also performs less depen-

ence on the initial ratio of labeled data. However, when the ini-

ial labeled data can represent the whole data space, our algorithm

ay have worse performance than the supervised algorithm SVM

ecause unlabeled data actually increase the probability of over fit-

ing. In these cases, unlabeled data will not always help to train a

lassifier. 

.5. Impact of the cutoff distance d c 

In formula ( 1 ), we can see that the computing results depend

n the cutoff distance d c . This section will analyze the performance

f our algorithm with the changes of d c . The cutoff distance d c is
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Fig. 6. The MAR of our algorithm and supervised SVM with respect to choice of average percentage of neighbors on different datasets: (a) Gauss50, (b) Gauss50x, (c) Iris, 

and (d) Waveform. 

Table 7 

The average values of rankings and their corresponding p -values computed by Friedman test on Tables 3 –6 . 

Comparison algorithms and the p -value Gauss50 Gauss50x Banknote authentication Waveform 

SVM KNN CART SVM KNN CART SVM KNN CART SVM KNN CART 

Supervised algorithm X 1.35 2.10 2.35 1.60 2.05 2.20 1.85 2.20 2.20 2.20 2.85 2.50 

A1 with X 2.60 2.35 2.35 2.10 2.15 3.20 2.35 2.65 3.35 2.30 2.80 3.15 

A2 with X 2.65 1.95 2.35 2.95 2.70 2.05 2.35 2.05 1.90 2.85 2.75 2.25 

Our-A with X 3.40 3.60 2.95 3.35 3.10 2.55 3.45 3.10 2.55 2.65 1.60 2.10 

Corresponding p -value 0.002 0.013 0.647 0.007 0.197 0.190 0.010 0.032 0.044 0.612 0.007 0.271 
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set as: 

D = sort 
(
d i j 

)
, d c = D ( � N T R × P a � ) (8)

where sort(x) means that x is sorted in ascending order, N TR is the

number of samples of TR set, P a is the average percentage of neigh-

bors in T R . 10-fold cross-validation strategy and an initial ratio 10%

of labeled data are also used in this section. The P a is increased

from 0.1% to 30% and the results are recorded in Fig. 6 . As men-

tioned in [29] , the density peaks clustering algorithm is sensitive

only to the relative magnitude of ρ i in different points, implying

that, for large data sets, the results of the analysis are robust with

respect to the choice of d c . Fig. 6 shows the mutually consistent

results in our experiments, which means that our algorithm is also

robust with respect to the P a in the range of 0.1%–30%. According

to Fig. 6 , our algorithm shows the relative unstable performance
uring the initial steps, whilst it predictably shows a robust per-

ormance in general in the range of 1%–20%. As a rule of thumb,

ne can choose d c so that the average percentage of neighbors P a 
s around 1%–2% of the total number of data points in the dataset,

hich is consistent with the [29] . 

.6. Impact of noise 

As is well known, one of the weaknesses of SSC algorithm is

hat they are sensitive to noise in the raw data. For addressing

his issue, random noise has been added into the T R to compare

ur algorithm with supervised algorithm SVM. Concretely, we in-

rease the percentage of noise from 5% to 30% in the experiments.

0-fold cross-validation strategy and an initial ratio 10% of labeled

ata are also used on the four datasets. As shown in Fig. 7 , the
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Fig. 7. The MAR of our algorithm and supervised SVM with respect to noise on different datasets: (a) Gauss50, (b) Gauss50x, (c) Iris, and (d) Waveform. 

M  

o  

r  

a  

w  

t  

3  

l

5

 

o  

o  

p  

t  

p  

p  

a  

u  

K  

m  

p  

r  

o  

m  

p  

p  

w  

p  

 

t  

w  

o  

r  

t  

p  

c  

r

A

 

o  

F  

t  

l  

a

R

 

 

 

 

 

 

 

 

AR of the two algorithms decrease as expected with the increase

f percentage of noise. However, we find that the MAR of our algo-

ithm decrease less than that of supervised algorithm SVM. For ex-

mple, the MAR of our algorithm decreases from 94.10% to 93.95%,

hile the MAR of supervised algorithm SVM decreases from 93.5%

o 92.55%, when the percentage of noise is increased from 5% to

0% on dataset Gauss50. Thus, we conclude that our algorithm is

ess sensitive to noise than supervised algorithm SVM. 

. Conclusions 

In this paper, we introduce a method to discover the spherical

r non-spherical distribution structure of data space based on find

f density peaks at first. Then, a framework for self-training SSC is

roposed, in which the structure of data space is integrated into

he self-training process of SSC to help train a better classifier. Es-

ecially, we also concluded the algorithm pseudo-code of our pro-

osed framework. Concretely, two representative self-labeled SSC

lgorithms are chosen to compare with our proposed algorithm

nder the situations that different supervised algorithms of SVM,

NN, and CART are used as the base classifier. A series of experi-

ents on both artificial and real datasets are run to evaluate their

erformances. Besides, some other issues, such as impact of the

atio of labeled data, impact of the cutoff distance d c , and impact

f noise, are also analyzed in this paper. According to the experi-

ental results we conclude that our proposed algorithm has better

erformance than the two chosen self-labeled SSC algorithms, es-

ecially when the distribution of data is non-spherical. In addition,

e also find that our algorithm with supervised algorithm SVM

erforms better than that with supervised algorithm KNN or CART.
In the future, we plan to carry out the follow works to fur-

her improve the performance of our proposed algorithm. First, we

ill research a technology to automatically extract threshold value

f cutoff distance d c [37] , rather than setting by subjective expe-

ience. Second, we will adopt the synthetic examples generation

echnology to improve the classification performance of our pro-

osed algorithm [38] . Final, we will develop our algorithm to pro-

ess quality-of-service data [35,36,43] based on optimization algo-

ithm, such as particle swarm optimization [41,42] . 
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