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Abstract. Accurately predicting unknown quality-of-service (QoS) data based
on historical QoS records is vital in web service recommendation or selection.
Recently, latent factor (LF) model has been widely and successfully applied to
QoS prediction because it is accurate and scalable under many circumstances.
Hence, state-of-the-art methods in QoS prediction are primarily based on LF.
They improve the basic LF-based models by identifying the neighborhoods of
QoS data based on some additional geographical information. However, the
additional geographical information may be difficult to collect in considering
information security, identity privacy, and commercial interests in real-world
applications. Besides, they ignore the reliability of QoS data while unreliable
ones are often mixed in. To address these issues, this paper proposes a data-
aware latent factor (DALF) model to achieve highly accurate QoS prediction,
where ‘data-aware’ means DALF can easily implement the predictions
according to the characteristics of QoS data. The main idea is to incorporate a
density peaks based clustering method into an LF model to discover the
neighborhoods and unreliable ones of QoS data. Experimental results on two
benchmark real-world web service QoS datasets demonstrate that DALF has
better performance than the state-of-the-art models.

1 Introduction

Web services are software components used to exchange data between two software
systems over a network [1]. In this era of the Internet, there are numerous online web
services [2]. How to select optimal ones from a large candidate set and recommend
them to potential users becomes a hot yet thorny issue [3].

Quality-of-Service (QoS) is essential for addressing such an issue because it is a
significant factor to evaluate the performance of web services [1, 2, 4]. Once QoS data
of candidate web services are obtained, reliable ones can be selected and recommended
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to potential users accordingly. Conducting warming-up tests is an important way to
acquire QoS data. However, it is economically expensive [3, 5, 6].

Alternatively, QoS prediction is another widely used way to acquire QoS data [5–
9]. Its principle is to predict unknown QoS data based on historical records and/or other
information. Collaborative filtering (CF), which has been successfully applied to e-
commerce recommendation systems [10, 11], is frequently adopted to implement QoS
prediction [5–9, 12–17]. CF-based QoS prediction is developed based on a user-service
QoS matrix [5–9, 12–17], where each column denotes a specified web service, each
row denotes a specified user, and each entry stands for a historical QoS record pro-
duced by a specified user invoking a specified web service. Such a matrix is sparse [5–
9, 12–17]. Thus, how to accurately predict the missing data of the sparse user-service
QoS matrix based on its known ones is the key to achieve CF-based QoS prediction.

Among CF-based QoS prediction methods, latent factor (LF)-based models are more
widely adopted [8, 9, 12–15, 17]. Originated from matrix factorization (MF) techniques
[3, 10], an LF-based model works by building a low-rank approximation to the given
user-service QoS matrix based on its known data only. It maps both users and services
into the same low-dimensional LF space, trains desired LFs on the known data, and then
predicts the missing data heavily relying on these resultant LFs [18].

Since LF-based model has the powerful ability on QoS prediction, the state-of-the-
art methods in this area are primarily based on LF [8, 9, 12, 17]. They improve the
basic LF-based models by identifying the neighborhoods of QoS data based on his-
torical QoS records plus some additional geographical information. However, these
geography-LF-based models have the following drawbacks:

(a) They adopt a common set on raw QoS data to identify the neighborhoods. Since
the raw user-service QoS matrix can be very sparse, resultant common sets of
users/services are commonly too small to identify the neighborhoods precisely.
For example, Fig. 1 shows that many known data (red entries) are abandoned in
finding the common sets among users, making the resultant neighborhoods lack
reliability.

(b) They ignore the data reliability. Unreliable QoS data or called noises collected
from malicious users (e.g., badmouthing a specific service) are often mixed up
with the reliable ones [15]. Their QoS prediction accuracy would be impaired
instead of being improved if they employ the unreliable QoS data.

(c) Additional geographical information can be difficult to gather in considering
identity privacy, information security, and commercial interest. Moreover, geo-
graphical similarities can be influenced by unexpected factors like information
facilities, routing policies, network throughput, and time of invocation.

To address the above drawbacks, this paper proposes a data-aware latent factor
(DALF) model to achieve highly accurate QoS prediction. The main idea is to incor-
porate a density peaks based clustering method (DPClust) [19] into an LF model to
discover the characteristics of QoS data, which can guide DALF to implement QoS
prediction appropriately. The main contributions of this work include:

(a) We propose a method that can simultaneously identify a neighborhood for a user
or a web service and detect the unreliable QoS data existed in the known ones.
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(b) We theoretically analyze DALF and design its algorithm.
(c) We conduct detailed experiments on two benchmark real-world web service QoS

datasets to evaluate DALF and compare it with the state-of-the-art models.

To the best of our knowledge, this work is never encountered in any previous works
because (i) it can not only identify the neighborhoods but also detect the unreliable QoS
data, (ii) it builds reliable neighborhoods solely based on a given QoS matrix but
considering its full information, and (iii) it does not require any additional information.

2 Preliminaries

2.1 LF Model

The QoS data is a user-service QoS matrix R defined as Definition 1 [9–11].

Definition 1. Given a user set U and a web service set S; let R be a |U| � |S| matrix
where each element ru;s describes a user u’s (u 2 U) experience on a web service s
(s 2 S). RK and RU indicate the known and unknown entry sets of R respectively.
R usually is a sparse matrix with RKj j � RUj j.
Definition 2. Given R, U, S, and f; given a |U| � f matrix P for U and an f � |S|
matrix Q for S; R̂ is R’s rank-f approximation based on RK under the condition of
f � min(|U|, |S|). An LF model is to seek for P and Q to obtain R̂ and errorP
ðu;sÞ2RK ðru;s � r̂u;sÞ2 is minimized. R̂ is given by R̂ ¼ PQ where each element r̂u;s is

the prediction for each ru,s of R, u 2 U and s 2 S. f is the dimension of LF space. P and
Q are the LF matrices for users and web services respectively.

According to Definition 2, the loss function for LF model is [9–11]:

argmin
P;Q

eðP; QÞ ¼ 1
2

X
ðu;sÞ2RK

ru;s �
Xf
k¼1

pu;kqk;s

 !2

: ð1Þ

User: a

Web services
5 1 ? ? ?

2 3 4 1 ?

? ? 4 1 4User: b

5 1 ? ? ?

2 3 4 1 ?

5 1 ? ? ?

? ? 4 1 4
Common set: green entries      Abandoned set: red entries

Target user u

Fig. 1. The dilemma in building neighbor-
hoods based on common sets defined on raw
QoS data. (Color figure online)

(a)

δ

ρ

(b)

Fig. 2. The example of DPClust: (a) data
distribution; (b) decision graph for data in (a);
different colors correspond to different clusters.
(Color figure online)
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As analyzed in [9, 10, 18], it is important to integrate the Tikhonov regularization
into (1) to improve its generality as follow:

argmin
P;Q

eðP; QÞ ¼ 1
2

X
ðu;sÞ2RK

ru;s �
Xf
k¼1

pu;kqk;s

 !2

þ k
2

X
ðu;sÞ2RK

Xf
k¼1

p2u;k þ
Xf
k¼1

q2k;s

 !
;

ð2Þ

where k is the regularization controlling coefficient. By minimizing (2) with an opti-
mizer, e.g., stochastic gradient descent (SGD), P and Q are extracted from R.

2.2 DPClust Algorithm

DPClust is a clustering algorithm based on the idea that cluster centers are charac-
terized by a higher density than their neighbors and by a relatively large distance from
data points with higher densities [19]. We employ DPClust to develop DALF because
it can not only find the characteristics of data but also spotted the outliers.

Given a dataset X ¼ fx1; x2; . . .; xGg, for each data point xi; i 2 1; 2; . . .;Gf g, its
local density qi is computed via cut-off kernel or Gaussian kernel. Cut-off kernel is as
follow:

qi ¼
XN

j¼1;j 6¼i
Uðdi;j � dcÞ; U tð Þ ¼ 1 t\0

0; others

�
ð3Þ

where di,j is the distance between data points xi and xj and the number of all the di,j is
G � (G−1)/2, and dc is a cutoff distance with a fixed value. Gaussian kernel is as
follow:

qi ¼
XG

j¼1;j6¼i
e�ð

di;j
dc
Þ2 ð4Þ

For a robust computing of qi, dc can be set as [19, 20]:

Vec ¼ sort dij
� �

; dc ¼ Vecð PVec � G� ðG� 1Þ=2b cÞ ð5Þ

where Vec is a vector obtained by sorting all the di,j in ascending order, PVec is a
percentage denoting the average percentage of neighbors of all the data points.
According to [19, 20], PVec is usually set around 1% to 2% as a rule of thumb.

For each data point xi, di is the minimum distance between xi and any other data
point with higher local density:

di ¼ minj:qi\qjðdi;jÞ;
maxjðdijÞ;

others
8j; qi� qj

�
ð6Þ
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Then, cluster centers are recognized as data points for which the value of q and d
are anomalously large.

Figure 2 is a simple example for illustrating DPClust. Figure 2(a) shows 26 data
points embedded in the two-dimensional space. After computing q and d for all the data
points, the decision graph can be drawn in Fig. 2(b). Then, we can easily recognize the
blue and pink solid data points as the cluster centers. Note that the three black hollow
data points are the outliers and have a relatively small q and a large d, which means that
DPClust can also detect the outliers by computing outlier factor ci for each xi as follow:

ci ¼ qi=di: ð7Þ

Formula (7) indicates that an outlier has an anomalously small value of c.

3 The Proposed DALF Model

Figure 3 depicts the flowchart of DALF that has three parts. Part 1 is extracting LF
matrices P for users and Q for services. Part 2 is identifying neighborhoods of QoS data
and detecting unreliable QoS data by employing DPClust algorithm. Concretely, P is
used to identify neighborhoods of users and detect unreliable users, and Q is used to
identify neighborhoods of services and detect unreliable services. Part 3 is predicting
the unknown entries in R based on Part 2. There are four prediction strategies in Part 3.
The characteristics of QoS data will determine which one or more are appropriate to
implement predictions. Next, we give the detailed descriptions on the three parts.

|U|

|S|

R̂

2 ? ? 3 ? ?
? ? ? ? ? 2
? ? ? ? 1 ?
3 ? 4 ? ? ?
? ? ? 5 ? ?
4 ? ? ? ? ?
? ? ? ? 2 ?
? 5 ? ? ? 3
? ? ? 4 ? ?

R

f

f

|S|

QT

P
2 ? ?
? ? ?
? ? ?
3 ? 4
? ? ?
4 ? ?
? ? ?
? 5 ?
? ? ?

3 ? ?
? ? 2
? 1 ?
? ? ?
5 ? ?
? ? ?
? 2 ?
? ? 3
4 ? ?

2 ? ? 3 ?
? ? ? ? ?
? ? ? ? 1
3 ? 4 ? ?
? ? ? 5 ?
4 ? ? ? ?
? ? ? ? 2
? 5 ? ? ?
? ? ? 4 ?

?
2
?
?
?
?
?
3
?

Neighborhoods 
1 and 2(web services)

Reliable/Unrelaibel 
web services

2 ? ? 3 ? ?
? ? ? ? ? 2

? ? ? ? 1 ?
3 ? 4 ? ? ?
? ? ? 5 ? ?
4 ? ? ? ? ?

? ? ? ? 2 ?
? 5 ? ? ? 3
? ? ? 4 ? ?

Neighborhood 1(users)

Neighborhood 2(users)

Neighborhood 3(users)

? 5 ? ? ? 3
? ? ? 4 ? ?

2 ? ? 3 ? ?
? ? ? ? ? 2
? ? ? ? 1 ?
3 ? 4 ? ? ?
? ? ? 5 ? ?
4 ? ? ? ? ?
? ? ? ? 2 ?

Reliable users

Unreliable users

Predicting
based on 

neighborhoods
of users

Predicting
based on 

reliable users

Predicting
based on 

neighborhoods
of web services

Predicting
based on 

reliable web 
services

2 3 2 3 ? ?
2 4 2 4 ? 2
3 5 1 1 1 3
3 2 4 3 3 1
2 2 1 5 1 5
4 2 5 4 2 4
4 5 4 4 2 4
3 5 3 5 4 3
4 3 5 4 5 4

Input Part 1 Part 2 Part 3

Determining
which is best 
for prediction 
according to 

characteristics
of QoS data

Output

|U|

Fig. 3. Flowchart of the proposed DALF
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3.1 Extracting LF Matrices for Users and Services

This part aims to extract LF matrices P for users and Q for services from R based on an
LF model. We apply SGD to (2) to consider instant loss on a single element ru,s:

eu;s ¼ 1
2

ru;s �
Xf
k¼1

pu;kqk;s

 !2

þ k
2

Xf
k¼1

p2u;k þ
Xf
k¼1

q2k;s

 !
ð8Þ

Then, LFs involved in (8) are trained by moving them along the opposite of the
stochastic gradient of (8) with respect to each single LF, i.e., we make

On ru;s; for k ¼ 1� f :

pu;k  pu;k þ gqk;s ru;s �
Xf
k¼1

pu;kqk;s

 !
� kgpu;k;

qk;s  qk;sþ gpu;k ru;s �
Xf
k¼1

pu;kqk;s

 !
� kgqk;s:

8>>>>><
>>>>>:

ð9Þ

After LFs are trained on all the elements in RK by computing (9), P and Q are
extracted. For ease of formulation, we use the function (10) to represent extracting
P and Q from R based on an LF model as follow.

fP;Qg ¼ FLF P; Q Rjð Þ ð10Þ

3.2 Identifying Neighborhoods of QoS Data and Detecting Unreliable
QoS Data

Since LF matrices P and Q respectively reflect the users and services characteristics
hidden in R, we can identify neighborhoods of QoS data and detect unreliable QoS data
based on them. Here, we use parameter a to denote the ratio of unreliable QoS data.

A. With respect to users

This section explains how to identify a neighborhood for a user and detect unre-
liable users based on P. Here P is seen as the dataset of users. For each user u, its local
density qu is computed via cut-off kernel as:

qu ¼
XUj j

u0¼1;u0 6¼u
U du;u0 � dU
� �

; U tð Þ ¼ 1 t\0
0; others

�
ð11Þ

where dU is the cutoff distance with respect to users, u′ denotes another user that is
different from user u, du;u0 denotes the distance between users u and u

0
. Here we

compute du;u0 with Euclidean distance as:
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du;u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXf
k¼1

pu;k � pu0;k
� �2

vuut ð12Þ

qu also can be computed via Gaussian kernel as:

qu ¼
XUj j

u0¼1;u0 6¼u
e
� du;u0

d
U

� �2

ð13Þ

According to (5), dU is computed as:

Vec ¼ sort du;u0
� �

; dU ¼ Vecð PVec � Uj j � ð Uj j � 1Þ=2b cÞ ð14Þ

Then, the minimum distance du of user u between itself and any other user with
higher local density is computed as:

du ¼ minu0:qu\qu0 ðdu;u0 Þ; others
maxu0 ðdu;u0 Þ; 8u0; qu� qu0

�
ð15Þ

Finally, the outlier factor cu of user u can be computed as:

cu ¼ qu=du ð16Þ

Based on all the qu; du, and cu, we can discover the user dataset P’s clusters and
outliers. Here clusters represent neighborhoods of users, outliers represent unreliable
users. By computing (11)–(16), the original R can be separated into N matrices
fRU

1 ;R
U
2 ; . . .;R

U
Ng, where each matrix RU

n ; n 2 1; 2; . . .;Nf g, denotes a neighborhood of
users; or separated into two matrices fRU

r ;R
U
u g, where RU

r denotes the reliable users and
RU
u denotes the unreliable users. Here the ratio of unreliable QoS data a is computed by:

a ¼ RU
u

�� ��= RU
r

�� ��þ RU
u

�� ��� �
: ð17Þ

B. With respect to services

This section explains how to identify a neighborhood for a service and detect
unreliable services based on Q. Here Q is seen as the dataset of services. For each
service s, its local density qs, minimum distance ds between itself and any other service
with higher local density, and outlier factor cs can be computed by (18)–(23).

qs ¼
XSj j

s0¼1;s0 6¼s
U ds;s0 � dS
� �

; U tð Þ ¼ 1 t\0
0; others

�
ð18Þ

390 D. Wu et al.



ds;s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXf
k¼1

qk;s � qk;s0
� �2

vuut ð19Þ

qs ¼
XSj j

s0¼1;s0 6¼s
e
� ds;s0

d
S

� �2

ð20Þ

Vec ¼ sort ds;s0
� �

; dS ¼ Vecð PVec � Sj j � ð Sj j � 1Þ=2b cÞ ð21Þ

ds ¼ mins0:qs\qs0 ðds;s0 Þ; others
max

s0 ðds;s0 Þ; 8s0; qs� qs0

�
ð22Þ

cs ¼ qs=ds ð23Þ

where s0 is another service that is different from service s; ds;s0 is the distance between
services s and s0, dS is the cutoff distance for services. Similarly, the original R also can
be separated into N matrices fRS

1;R
S
2; . . .;R

S
Ng, where each matrix RS

n; n 2 1; 2; . . .;Nf g,
denotes a neighborhood of services; or separated into two matrices fRS

r ;R
S
ug, where RS

r

and RS
u denote the reliable and unreliable services respectively. Here, a is computed by

a ¼ RS
u

�� ��= RS
r

�� ��þ RS
u

�� ��� �
: ð24Þ

3.3 Prediction

After Sect. 3.2, we can accurately predict the missing data in R by employing the four
matrices sets of fRU

1 ;R
U
2 ; . . .;R

U
Ng, fRU

r ;R
U
u g, fRS

1;R
S
2; . . .;R

S
Ng, and fRS

r ;R
S
ug respec-

tively. Each matrices set can be used to implement the prediction, but which one is the
best? This is determined by the characteristics of QoS data and please refer to Sect. 4.3
to see an example. Next, we respectively explain how to implement the prediction
based on the four matrices sets and formula (10).

First, if matrices set fRU
1 ;R

U
2 ; . . .;R

U
Ng is used to predict, the computing formulas

are

for n ¼ 1�N : fPU
n ; Q

U
n g ¼ FLF PU

n ; Q
U
n RU

n

��� �
; ð25Þ

for n ¼ 1�N : R̂U
n ¼ PU

n Q
U
n ; ð26Þ

R̂ ¼ R̂U
1 [ R̂U

2 [ . . .[ R̂U
N : ð27Þ

Second, if matrices set fRU
r ;R

U
u g is employed to predict, the computing formulas

are
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fPU
r ; Q

U
r g ¼ FLF PU

r ; Q
U
r RU

r

��� �
; ð28Þ

R̂U
r ¼ PU

r Q
U
r ; ð29Þ

R̂ ¼ R̂U
r � PQ rowj : ð30Þ

where R̂U
r � PQ rowj indicates that using R̂U

r to replace the corresponding rows of the
matrix product of PQ.

Third, if matrices set fRS
1;R

S
2; . . .;R

S
Ng is used to predict, the computing formulas

are

for n ¼ 1�N : fPS
n; Q

S
ng ¼ FLF PS

n; Q
S
n RS

n

��� �
; ð31Þ

for n ¼ 1�N : R̂S
n ¼ PS

nQ
S
n; ð32Þ

R̂ ¼ R̂S
1 [ R̂S

2 [ . . .[ R̂S
N : ð33Þ

Fourth, if matrices set fRS
r ;R

S
ug is employed to predict, the computing formulas are

fPS
r ; Q

S
rg ¼ FLF PS

r ; Q
S
r RS

r

��� �
; ð34Þ

R̂S
r ¼ PS

rQ
S
r ; ð35Þ

R̂ ¼ R̂S
r � PQ columnj : ð36Þ

where R̂S
r � PQ columnj indicates that using R̂S

r to replace the corresponding columns of
the matrix product of PQ.

3.4 Algorithm Design and Analysis

DALF relies on four algorithms. Algorithm 1 is extracting LF matrices (ELFM), Algo-
rithm 2 is computing QoS data with respect to users (U-QoS), Algorithm 3 is computing
QoS data with respect to services (S-QoS), and Algorithm 4 is Prediction. Their pseudo
codes and time cost of each step are given in Algorithms 1–4. For Algorithms 1–3, their

computational complexities are H Nmtr � RKj j � fð Þ, H Uj j2�f
� �

, and H Sj j2�f
� �

,

respectively, where Nmtr is the maximum training round. For Algorithm 4, its compu-

tational complexity is H Uj j2þ Sj j2
� �

� f
� �

þH Nmtr � RKj j � fð Þ, which is the total

computational complexity of DALF.
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4 Experimental Results

4.1 Datasets

Two benchmark datasets, which are real-world web service QoS data collected by the
WS-Dream system (https://github.com/wsdream/wsdream-dataset) and frequently used
in prior researches [2, 3, 7–9, 12–15, 17], are selected to conduct the experiments. First
dataset (D1) is the Response Time that contains 1,873,838 records and second dataset
(D2) is the Throughput that contains 1,831,253 records. These records are generated by
339 users on 5,825 web services. For both two datasets, different test cases are designed
to evaluate the performance of DALF. Table 1 summarizes the properties of all the test
cases, where column ‘Density’ denotes the density of the training matrix.

Input: R; Output: P, Q Cost
1 initializing f, λ, η, Nmtr=max-training-round Θ(1)
2 while t≤Nmtr && not converge ×Nmtr

3 for each known entry ru,s in R         // ru,s RK ×|RK|
4 for k=1 to f ×f
5 computing pu,k according to (9) Θ(1)
6 computing qk,s according to (9) Θ(1)
7 end for --
8 end for --
9 t=t+1 Θ(1)

10 end while --
11 return P, Q Θ(1)

Algorithm 1. ELFM 
Input: P, R; Output: {RU

1 , RU
2 , …, RU

N }, { RU
r , RU

u } Cost
1 for u=1 to |U| ×|U|
2 for u′= u+1 to |U| ×(|U|-1)/
3 computing du,u′ according to (12) Θ(f)
4 end for --
5 end for --
6 computing dU according to (14) Θ(|U|2)
7 for u=1 to |U| ×|U|
8 computing ρu according to (11) or (13) Θ(|U|-1
9 end for --

10 for u=1 to |U| ×|U|
11 computing δu according to (15) Θ(|U|)
12 computing γu according to (16) Θ(1)
13 end for --
14 clustering P according to all the ρu and δu Θ(1)
15 separating R into { RU

1 , RU
2 , …, RU

N }according to step 14 Θ(1)
16 detecting unreliable users according to all γu Θ(1)
17 separating R into { RU

r , RU
u }according to step 16 Θ(1)

18 return: {RU
1 , RU

2 , …, RU
N }, {RU

r , RU
u } Θ(1)

Algorithm 2. U-QoS

Input: Q, R; Output: { RS
1 , RS

2 , …, RS
N}, { RS

r , RS
u } Cost

1 for s=1 to |S| ×|S|
2 for s′= s+1 to |S| ×(|S|-1)/2
3 computing ds,s′ according to (19) Θ(f)
4 end for --
5 end for --
6 computing dS according to (21) Θ(|S|2)
7 for s=1 to |S| ×|S|
8 computing ρs according to (18) or (20) Θ(|S|-1)
9 end for --

10 for s=1 to |S| ×|S|
11 computing δs according to (22) Θ(|I|)
12 computing γs according to (23) Θ(1)
13 end for --
14 clustering Q according to all the ρs and δs Θ(1)
15 separating R into { RS

1 , RS
2 , …, RS

N } according to step 14 Θ(1)
16 detecting unreliable users according to all the γs Θ(1)
17 separating R into { RS

r , RS
u } according to step 16 Θ(1)

18 return: { RS
1 , RS

2 , …, RS
N }, { RS

r , RS
u } Θ(1)

Algorithm 3. S-QoS
Input:R; Output: R̂ Cost

1 Calling Algorithm 1 Θ(Nmtr×|RK|×f )
2 Calling Algorithm 2 Θ(|U|2×f)
3 Calling Algorithm 3 Θ(|S|2×f)
4 determining which matrices set is best for prediction Θ(1)
5 if { 1

UR , 2
UR ,…,

U
NR } is best for prediction

Θ(Nmtr×|RK|×f )
6 for n=1 to N
7 computing ˆU

nR according to (25) and (26)
8 end for
9 computing R̂ according to (27)

10 else if { ,U
rR U

uR } is best for prediction
Θ(Nmtr×|RK|×f )

11 computing R̂ according to (28)—(30)
12 else if { 1 ,SR 2 ,SR …,

S
NR } is best for prediction

Θ(Nmtr×|RK|×f )
13 for n=1 to N
14 computing ˆ S

nR according to (31) and (32)
15 end for
16 computing R̂ according to (33)
17 else computing R̂ according to (34)—(36) Θ(Nmtr×|RK|×f )
18 end if
19 return: R̂ Θ(1)

Algorithm 4. Prediction 
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4.2 Evaluation Protocol

To evaluate the prediction quality of DALF, mean absolute error (MAE) is computed

by MAE ¼ P
w;jð Þ2C rw;j � r̂w;j

�� ��
abs

� �
= Cj j, where C denotes the testing set.

4.3 Prediction According to the Characteristics of QoS Data

This section illustrates how to predict the unknown QoS data according to its charac-
teristics. First, extracting LF matrices P for users and Q for services on D1.4 and D2.4
respectively. Then, computing q, d, and c for each user or service. After that, the decision
graphs for D1.4 andD2.4 can be drawn in Figs. 4 and 5.With respect to users, we observe
that there are two cluster centers on D1.4 and three cluster centers on D2.4, which means
that users of D1.4 and D2.4 could be separated into two and three neighborhoods
respectively. With respect to services, there is only one cluster center on both D1.4 and
D2.4, which means that there are no neighborhoods in services. Besides, we can find that
there are many outliers (red rectangles) in both D1.4 and D2.4 with respect to services,
which means that there are many unreliable services. Similar results are obtained on the
other test cases. Thus, we conclude that predicting based on neighborhoods of users or
reliable services is the best strategy for the eight test cases. In addition, we have conducted
some experiments to verify that these two prediction strategies have better performance
than the other two. For saving space, we never show their results.

Table 1. Properties of all the designed test cases.

Dataset No. Density Training data Testing data

D1 D1.1 5% 93,692 1,780,146
D1.2 10% 187,384 1,686,454
D1.3 15% 281,076 1,592,762
D1.4 20% 374,768 1,499,070

D2 D2.1 5% 91,563 1,739,690
D2.2 10% 183,125 1,648,128
D2.3 15% 274,689 1,556,564
D2.4 20% 366,251 1,465,002

Fig. 4. The decision graph for D1.4 with
respect to: (a) users, (b) services. (Color figure
online)

Fig. 5. The decision graph for D2.4 with
respect to: (a) users, (b) services. (Color figure
online)
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4.4 Predicting Based on Neighborhoods of Users

A. Impacts of f

The parameters are set as η = 0.01 for D1, η = 0.0001 for D2, k = 0.01, and
PVec = 2%, uniformly. Figure 6 shows the experimental results when f increases from
10 to 320. Since the higher dimension of LF space has better representation learning
ability, DALF has a lower MAE as f increases. However, as f increases over 80, the
MAE tends to decrease slightly or even increase. One reason is that with f = 80,
DALF’s representation learning ability is strong enough to precisely represent the test
cases. As a result, continuous increase of f after 80 cannot bring significant improve-
ment in prediction accuracy.

B. Impacts of k

This set of experiments sets the parameters as η = 0.01 for D1, η = 0.0001 for D2,
f = 20, and PVec = 2%, uniformly. Figure 7 records the MAE as k increases. We test a
larger range of k on D2 than on D1 because D2 has a much larger range of value than
D1. The MAE decreases at first as k increases in general on all the test cases. However,
it then increases when k grows over the optimal threshold, which means that DALF
may be greatly impacted by the regularization terms.

4.5 Predicting Based on Reliable Services

A. Impacts of a

The parameters are set as k = 0.01, η = 0.01 for D1, η = 0.0001 for D2, f = 20, and
PVec = 2%, uniformly. Figure 8 is the measured MAE as a increases. On D1, the MAE
decreases at first and then increases in general as a increases. The lowest MAE is
obtained when a around to 0.3. On D2, the results are more complicated. Concretely,
DALF has the lowest MAE when a = 0.05 or 0.1. According to these observations, it
seems that more services on D1 are detected as unreliable ones than that on D2.
Overall, these results validate that the prediction accuracy of DALF can be improved
by employing reliable services to train.

Fig. 6. MAE of DALF with different f pre-
dicting based on neighborhoods of users:
(a) D1, (b) D2.

Fig. 7. MAE of DALF as k increases predict-
ing based on neighborhoods of users: (a) D1,
(b) D2.
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B. Impacts of f and k

Since these results are very similar to that in Sects. 4.4(A) and (B), they are not
described in detail for saving space. Please refer to Sects. 4.4(A) and (B).

Table 3. MAE of all the compared models on each test case.

TestCases BLF RSNMF NIMF NAMF GeoMF LMF-PP AutoRec DALF

DALF-1 DALF-2

D1.1 0.5561 0.5438 0.5502 0.5465 0.5305 0.5285 0.5467 0.5457 0.5114
D1.2 0.4944 0.4868 0.4842 0.4976 0.4827 0.4725 0.5055 0.4857 0.451
D1.3 0.4691 0.4492 0.4508 0.4625 0.4495 0.4472 0.4598 0.4642 0.4331
D1.4 0.4531 0.4371 0.4346 0.436 0.4366 0.426 0.4482 0.452 0.4232
D2.1 18.9776 21.4302 17.7153 22.736 24.7465 18.3091 21.3118 17.6576 17.9117
D2.2 16.1924 17.2305 15.5264 17.9148 22.4728 15.9125 17.031 15.3595 15.5734
D2.3 14.9278 14.6879 14.2146 15.9876 17.7908 14.745 15.0156 14.3836 14.1739
D2.4 14.3061 14.3654 13.5638 14.7462 16.2852 14.1033 14.2265 13.6697 13.4772

Fig. 8. MAE of DALF as a increases pre-
dicting based on reliable services: (a) D1,
(b) D2.

Table 2. Descriptions of all the compared
models.

Models Descriptions

BLF Basic LF model proposed in 2009 [18]

RSNMF Improved LF-based model proposed in
2016 [3]

NIMF Improved LF-based model proposed in
2013 [21]

NAMF Geography-LF-based model proposed in
2016 [9]

GeoMF Geography-LF-based model proposed in
2017 [8]

LMF-PP Geography-LF-based model proposed in
2018 [12]

AutoRec The DNN-based model proposed in 2015
[22]

DALF-1 Predicting based on neighborhoods of
users

DALF-2 Predicting based on reliable services

Table 4. Statistical results of prediction accuracy with a significance level of 0.05.

Comparison DALF
vs
BLF

DALF
vs.
RSNMF

DALF
vs.
NIMF

DALF
vs.
NAMF

DALF
vs.
GeoMF

DALF
vs.
LMF-PP

DALF
vs.
AutoRec

p-value 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039 0.0039

Note that the best one between DALF-1 and DALF-2 for each test case is selected to conduct statistical
analysis
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4.6 Comparisons Between DALF and Other Models

We compare DALF with state-of-the-art models on prediction accuracy and compu-
tational complexity. They are three LF-based models, three geography-LF-based
models, and one deep neural network (DNN)-based model, and described in Table 2.

On prediction accuracy, the dimension of LF is set as f = 20 for all models except for
AutoRec (because AutoRec is a DNN-based model) to conduct the fair comparisons.
Besides, all other parameters of the compared models are set according to their original
papers. There are two situations for DALF to conduct the comparisons. They are also
marked in Table 2. Meanwhile, the other parameters for DALF are set as: a = 0.3 and
η = 0.01 for D1, a = 0.05 and η = 0.0001 for D2, k = 0.01, and PVec = 2%, uniformly.

The compared results are shown in Table 3. Besides, the Wilcoxon signed-ranks
test [23], as a nonparametric pairwise comparison procedure, is adopted to conduct
statistical test. The results are recorded in Table 4. From them, we have two findings:

(a) DALF has significantly better prediction accuracy than the other models. For
example, it has around 5.27%–17.15% lower MAE than AutoRec on all test cases.

(b) DALF-1 has much higher MAE than DALF-2 on D1, while they have similar
MAE on D2. Figure 4 shows that neighborhoods of users are not very clear on D1
but clear on D2, and unreliable services can be easily detected on both D1 and D2.
These findings mean that predicting based on neighborhoods of users is better for
D2 than for D1, and predicting based on reliable services are appropriate for both
D1 and D2.

On computational complexity, AutoRec is not compared because it is DNN-based
model with extremely high computational cost [24]. Table 5 concludes the computa-
tional complexities for all the models, where K1 and K2 are the number of nearest
neighbors for a user and for a service respectively. From it, we have two conclusions:

(a) BLF and RSNMF have lowest computational complexity because they are basic
LF-based models and never consider neighborhood or unreliable factors of QoS
data.

(b) DALF’s computational complexity is lower than or at least comparable to that of
the geography-LF-based models because f is much smaller than |U| and |S|.

Table 5. The computational complexities of all the compared models.

Model Complexity

BLF [18] H(Nmtr � |RK| � f)
RSNMF [3] H(Nmtr � |RK| � f)
NIMF [21] H(|U|2 � |S|) + H(Nmtr � |RK| � f � K1

2)
NAMF [9] H(|U|2) + H(Nmtr � |RK| � f)
GeoMF [8] H(|U|2 � |S| + |S|2 � |U|) + H(Nmtr � |RK| � f2 � (K1 + K2))
LMF-PP [12] H(|U|2 � |S| + |S|2 � |U|) + H(Nmtr � |RK| � f)
DALF H((|U|2 + |S|2) � f) + H(Nmtr � |RK| � f)
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5 Conclusions

We propose a data-aware latent-factor (DALF) model to achieve highly accurate QoS
prediction. The main idea is to incorporate a density peaks based clustering method
(DPClust) into a latent factor (LF)-based model to improve the prediction accuracy.
Empirical studies on two benchmark real-world web service QoS datasets demonstrate
that: (i) DALF can discover the characteristics of QoS data only based on the user-
service QoS matrix, (ii) DALF is a data-aware model because it can easily choose the
appropriate strategies to implement prediction according to the characteristics of QoS
data, and (iii) DALF has better performance than state-of-the-art models in QoS pre-
diction. Finally, an open challenge for DALF is how to combine the two respects of
users and services to further improve it. We plan to address this challenge in our future
work.
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