
Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

Water eutrophication evaluation based on semi-supervised classification: A
case study in Three Gorges Reservoir

Di Wua,b,1, Huyong Yana,b,1, Mingsheng Shanga, Kun Shana, Guoyin Wanga,⁎

a Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing
400714, China
b University of Chinese Academy of Sciences, Beijing 100049, China

A R T I C L E I N F O

Keywords:
Semi-supervised classification
Eutrophication evaluation
Three Gorges Reservoir

A B S T R A C T

Water eutrophication, which refers to the enrichment of nutrients to an aquatic environment, is one of the most
challenging problems in water protection. Although many researchers have made attempts to solve the eu-
trophication problem, there is one issue that needs to be further discussed, i.e., how to establish a fast, low-cost,
and accurate eutrophication evaluation model? For addressing this issue, this paper proposes a data-driven
eutrophication evaluation model based on the semi-supervised classification. Concretely, a case study in Three
Gorges Reservoir of China is carried out to demonstrate the validity of the proposed model. Experimental results
clearly show that the proposed model has the advantages of high computational efficiency, high accuracy, and
great ability of exploiting low-cost factors to assist or even replace high-cost factors in realizing the eu-
trophication evaluation. Moreover, we find that three low-cost factors, including pH, dissolved oxygen, and
ammonia-nitrogen, are effective in achieving a better eutrophication evaluation for Three Gorges Reservoir
based on the proposed model.

1. Introduction

Water is one of the most important resources for human survival
and economic development (Li et al., 2016a; Li et al., 2015). Un-
fortunately, water, including groundwater and surface-water, is un-
dergoing different degrees of deterioration all over the world because of
the intensive human activity (Wu and Sun, 2016). For example, serious
groundwater pollution in western China is induced by rapid urbaniza-
tion and industrialization (Li, 2016; Li et al., 2016b), and the degraded
water quality in the United States is caused by overfishing and in-
creased aquaculture (Heisler et al., 2008). Water eutrophication, which
refers to the enrichment of nutrients (nitrogen and phosphorus) to an
aquatic environment, is one of the most challenging problems in water
protection (Heisler et al., 2008). Similarly, due to the increased dis-
charge of nutrients from industrialization, agricultural modernization,
and urbanization, eutrophication is often reported and has attracted
many attentions from both public and government (Du et al., 2011;
Phillips et al., 2013). Nitrogen and phosphorus are necessary elements
for plant growth. However, if they are input into water body more than
necessary, the ecosystem will be changed, such as harmful algal blooms
(HABs) and high levels of phytoplankton biomass, resulting in

degradation of water quality (Qin et al., 2013). Eutrophication has
posed a threat to the safety of resident drinking water, the natural
ecological environment, and economic development (Heisler et al.,
2008). For instance, cyanobacterial blooms resulted from eutrophica-
tion caused a crisis for the Wuxi drinking water in 2007 (Qin et al.,
2010). Thus, we must adopt proper measures to control eutrophication
(Yang et al., 2008).

Obviously, the premise of controlling the water eutrophication is to
establish the appropriate methods or models to evaluate the trophic
status of water body. So far, many researchers have made attempts to
address this issue. In the environmental and ecological fields, there are
many models, including Carlson trophic state index (Carlson, 1977),
modified Carlson trophic state index (Aizaki, 1981), trophic state
(Vollenweider et al., 1998), comprehensive nutrition state index (Xu
et al., 2012), phytoplankton trophic index (Phillips et al., 2013), species
diversity index (Spatharis and Tsirtsis, 2013), integrated methodology
(Wu et al., 2013), eutrophication index (Fertig et al., 2014), etc. In the
field of informatics, neural network (Kuo et al., 2007; Melesse et al.,
2016; Singh et al., 2012; Yang et al., 2015), genetic algorithm (Song
et al., 2012), fuzzy set theory (Giusti et al., 2011), support vector ma-
chine (SVM) (Huo et al., 2014), and rough set theory (Yan et al., 2016b)
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have been used in eutrophication evaluation. However, these methods
or models still are not satisfactory in some cases because the eu-
trophication evaluation is nonlinear, multi-factors influenced, and
complex in water ecological system (Ding and Wang, 2013). Ad-
ditionally, due to the rapid development of automatic monitoring
techniques (Dong et al., 2015), these methods or models are facing
some new challenges as bellows:

• Due to the long time interval of traditional manual sampling, the
collected monitoring data is small in most cases. Under such situa-
tion, the most existed eutrophication evaluation models were de-
signed without considering the data processing ability. Thanks to
the rapid development of automatic monitoring techniques, we can
continuously collect massive monitoring data in 24 h. The massive
monitoring data can effectively and accurately reflect the real con-
ditions of water quality in time (Arienzo et al., 2015). Un-
fortunately, the explosive growth of monitoring data has brought
some new challenges to the existed eutrophication evaluation
models. For instance, How to effectively process the monitoring data
with TB level is an important problem for the existed eutrophication
evaluation methods or models.

• For most existed eutrophication evaluation models, total nitrogen
(TN), total phosphorus (TP), Chlorophyll a (Chl-a), Secchi depth
(SD), and Permanganate index (CODMn) are the key factors (Qin
et al., 2013). Besides, some other factors, such as water temperature
(T), dissolved oxygen (DO), pH, conductivity (Cond.), ammonia-ni-
trogen (NH3-N), suspended solid (SS), position of sampling site (site),
and season of sampling (season), are also connected with eu-
trophication (Giusti et al., 2011; Wu et al., 2013). However, the
costs of collecting these factors are different because of their dif-
ferent monitoring principles. For example, T, DO, pH, Cond., NH3-N,
and SS, can be collected easily by using the online sensors, while TN,
TP, and CODMn are relatively difficult to collect because they de-
mand the complicated pretreatment processes (A Xylem Brand,
2017). Thus, how to exploit the low-cost factors to assist or even
replace the high-cost factors to realize the eutrophication evaluate is
worth studying.

• In general, the existed eutrophication evaluation models rarely
consider the ability of processing incomplete information. However,
situation of missing key data happens frequently in the eu-
trophication evaluation because of the reasons of laboratory errors,
instrument malfunctions, and even human errors. Therefore, it is
necessary to take into account the ability of processing incomplete
information for an eutrophication evaluation.

Classification, which relies heavily on the training instances with
class labels, is an active research issue in data mining and machine
learning communities (Cococcioni et al., 2012; Luo et al., 2015a; Su
et al., 2009). Nevertheless, due to the technical support from experts as
well as long time consumption of manual process for data labeling, it is
difficult to obtain sufficient labeled data for supporting the classifica-
tion tasks. Having a multitude of unlabeled data and few labeled ones is
a common phenomenon in many practical applications (Zhou and Li,
2010). A successful and special methodology to tackle this problem is
semi-supervised classification (SSC). SSC is highly effective in alle-
viating the shortage of labeled instances in classification tasks by ex-
ploiting the abundant unlabeled data (Triguero et al., 2015b). Thus,
SSC has been widely and frequently used in several areas, including
fault diagnosis, remote sensing monitoring, face recognition, etc
(Schwenker and Trentin, 2014; Zhu, 2008). However, until now SSC
has not been widely applied in eutrophication, and only few researchers
have reported some preliminary studies on SSC applications in the
fields of water supply (Herrera et al., 2010) and water quality retrieving
(Wang et al., 2011).

Note that eutrophication evaluation actually is a classification task
and the three challenges discussed above can be conquered by SSC.

Thus, this paper innovatively proposes to use the SSC to achieve a
powerful eutrophication evaluation model to overcome the three
challenges discussed above. To the best of our knowledge, this paper is
the first one to analyze eutrophication based on SSC and is different
from the traditional environmental and ecological eutrophication ana-
lysis because it is completely data-driven. In order to illustrate the
principle and usefulness of our proposal, a case study in Three Gorges
Reservoir (TGR) of China is conducted in this paper. The experimental
results clearly validate the fact that our proposal is a promising alter-
native method to achieve eutrophication evaluation with strong gen-
eralization ability.

The remainder of this paper is organized as follows: Section 2 in-
troduces the materials and methods. Section 3 presents the proposed
model. Section 4 provides and discusses the experimental results. Fi-
nally, Section 5 concludes this paper.

2. Materials and methods

2.1. Materials

2.1.1. Study area
TGR, which is created by the Three-Gorge Dam, sites at

29°16′–31°25′N, 106°–111°10′E, and has a surface area of 1080 km2

(Zeng et al., 2006). The eutrophication in TGR has become the main
environmental problem and attracts more and more attention from
worldwide (Yan et al., 2016b). As shown in Fig. 1, the water level of
TGR experiences two phases throughout the whole year because of
flood management and water supply (Changjiang Maritime Safety
Administration, 2017). In the ascending phase, the water level gradu-
ally increases from 145 m to 175 m and the flow speed becomes slow.
The slow flow reduces the water exchange between the mainstream and
the tributaries, resulting in the deposition of nutrients. Consequently,
the eutrophication and even the HABs appeared in some tributaries
(Yang et al., 2010). In the descending phase, the flow speed becomes
fast, which intensifies the water exchange between the mainstream and
the tributaries. As a result, water stability is reduced and the con-
centration of suspended silt is increased, which induces the frequent
changes of water trophic state (Yang et al., 2010). Hence, the eu-
trophication evaluation of TGR should be high frequent for a better
understanding on the water trophic state of TGR. Moreover, under such
special hydrological conditions, the eutrophication evaluation of TGR
also faces the three challenges discussed in Section 1. Therefore, we
selected five typical tributaries in TGR as the study areas to validate the
usefulness and effectiveness of our proposal, as shown in Fig. 2.

2.1.2. Field data
Data were obtained from several sampling sections located at five

typical tributaries of TGR. The distributions of the tributaries are illu-
strated in Fig. 2. Sampling sections were visited during the period from

Fig. 1. The water level of TGR during two phases.

D. Wu et al. Ecological Indicators 81 (2017) 362–372

363



January 2007 to December 2015. Sampling frequency was once a
month. To evaluate the eutrophication status, biological and chemical
samples were taken at each sampling section. The analytical methods
and standards shown in Table 1 were followed to ensure the analytical
reliability of the samples. Besides, duplicates were also executed during
the analyses for quality assurance and quality control.

2.2. Methods

2.2.1. Definition of SSC
SSC has been deeply investigated by prior researchers owing to its

effectiveness in alleviating the shortage of labeled instances. Various
SSC approaches can be generally classified into four categories, i.e.,
generative methods, graph-based methods, semi-supervised support
vector machines, and self-labeled methods (Dong et al., 2016). In SSC, a
sample of data is described with a d-dimensional vector of attributes

plus on class label as:

=X X X X ω( , , ..., , )i i i i
d1 2 (1)

where Xi is the ith instance of all the data, d is the dth feature of Xi, and
ω indicates Xi belongs to a class ω. L is labeled set with ω known and
consists of NL instances. U is unlabeled set with ω unknown and consists
of NU instances. Note that a typical SSC problem is NU > > NL. Set
L∪U forms the training set TR. In addition, there is a testing set TS when
new unseen instances have the same characteristics as Xi with ω un-
known. The purpose of SSC is to learn a better classifier C by using TR
instead of only using L to predict the labels for unlabeled data (trans-
ductive, U) or new unseen data (inductive, TS) (Triguero et al., 2015a).

2.2.2. Used SSC algorithm
Although there are many SSC algorithms, one of the most re-

presentative SSC algorithms, i.e., Co-forest (Li and Zhou, 2007), is se-
lected to exemplify the principle of our proposal in this paper because
of its excellent performance in solving SSC problems. Note that any
kind of SSC algorithms, such as propagable graph based algorithm (Ni
et al., 2012) and synthetic data based algorithm (Triguero et al.,
2015a), can be used as the SSC algorithm in our proposal.

Co-forest is one of the self-labeled methods of SSC. It integrates a
well-known ensemble method named Random Forest (Breiman, 2001) to
estimate the labeling confidence of unlabeled instances and easily
produce the final hypothesis. Co-forest also requires neither that the
data are described by sufficient and redundant attribute subsets nor
special learning algorithms which frequently employ time-consuming
cross validation in learning. The Random Forest is the base classifier in
Co-forest. The pseudo code of Co-forest is presented in Table 2, where Hi

is the ensemble of N random trees except for ith random tree, the

function − −( )SubSampled U , e W
e

ˆ
ˆ

i t i t

i t

, 1 , 1

,
means randomly removing

− − −U e W
e

ˆ
ˆ

i t i t

i t

, 1 , 1

,
number of data from U, the function EstimateError(Hi, L)

means estimating the classification error rate of Hi by using L, and the
function Confidence(Hi, xu) means estimating the confidence level for xu
by using Hi.

2.2.3. Used standard eutrophication evaluation criterion
In this paper, the Technical Guideline for Water Environmental

Quality Assessment of Three Gorges Reservoir (TGWEQA-TGR)
(Ministry of Environmental Protection of the People's Republic of
China, 2010) is selected as the standard eutrophication evaluation
criterion because it is designed for TGR exclusively. The formulas
(2)–(7) and Table 3 specify the evaluation method of TGWEQA-TGR. In
Table 3, the data were classified into five ranks. Rank 1 is oligotrophic,
Rank 2 is mesotrophic, Rank 3 is light eutrophic, Rank 4 is medium
eutrophic, and Rank 5 is heavy eutrophic.

= ⎡
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2.6027 7.6079 ln( )
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= ⎡
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−
− ⎤

⎦⎥
TLI COD

ρ
( ) 10 2.46

0.7204 4.1230 ln( )
ln 2.5Mn
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(6)

where ρchla, ρTN, ρTP, ρSD and ρCODMn represent the concentrations of Chl-
a, TN, TP, SD, and CODMn, respectively.

Fig. 2. The sampling sites of five typical tributaries in TGR.

Table 1
The analytical methods and standards of these samples.

Indicators Units Analytical methods Standards and
norms

Chla mg/L Spectrophotometry SL88–2012
SD m Secchi disk method /
TN mg/L Flow injection analysis and N-(1-

naphthyl)ethylene diamine
dihydrochloride spectrophotometry

HJ 668–2013

TP mg/L Flow injection analysis and ammonium
molybdate spectrophotometry

HJ 671–2013

CODMn mg/L Acidic potassium permanganate method GB/T11892–1989
T °C Thermometer GB/T

13195–1991
Cond. μs/m Conductivity meter /
pH / Glass electrode GB/T6920–1986
DO mg/L Electrochemical probe method HJ 506–2009
SS mg/L Gravimetric method GB/T 11901-1989
NH3-N mg/L Flow injection analysis and Salicylic

acid spectrophotometry
HJ 666–2013
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Table 2
Pseudo code of Co-forest.
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∑= ⋅
=

TLI Σ W TLI j( ) ( )
j

j
1

5

(7)

where TLI(Σ) represents the comprehensive trophic level index, TLI(j) is
the trophic level index of each indicator (Chl-a, TN, TP, SD, and
CODMn),Wj denotes the weight of each indicator (Chl-a, TN, TP, SD, and
CODMn). Among them, WChl-a = 0.5996, WTN = 0.0718,
WTP = 0.1370, WSD = 0.0075, WCODMn = 0.1840.

3. The proposed model

In this section, the proposed model is described, in which an SSC
algorithm is exploited to achieve a powerful eutrophication evaluation
model. Fig. 3 depicts the flowchart of the proposed model. First, a small
part of data is labeled according to one of the standard evaluation
criteria. Next, the labeled data with labels are used as L and the other
data without labels are used as U. Specifically, the data in U have fewer
factors than that in L. Meanwhile, some other factors absented in the
standard evaluation criterion can also be added into L and U if they are
beneficial for the learning of evaluation model. The L and U form the
TR. Then, an SSC algorithm is exploited to keep learning an eu-
trophication evaluation model on TR until the stopping criteria are sa-
tisfied. Finally, the learned evaluation model is employed to evaluate
the trophic state for new unseen data (inductive, TS). It is noticed that
the data in U (transductive, U) also have been labeled during the
learning process.

In order to explain the principle of the proposed model more clearly,
a case is illustrated in Fig. 4. A small number of data with factors of TN,

TP, Chl-a, SD, and CODMn are labeled according to TGWEQA-TGR first
and then are used as L, as shown in Fig. 4(a). Meanwhile, a large
number of data without the high-cost factor of CODMn are used as U.
Next, both L and U are employed to learn an evaluation model based on
an SSC algorithm. Finally, the new unseen data without the high-cost
factor of CODMn can been labeled or evaluated accurately based on the
learned evaluation model. Similarly, if some other low-cost factors
absented in the TGWEQA-TGR, such as DO, pH, have assistance in
learning the evaluation model, they can also be added into the whole
processes to improve the performance of evaluation model, as shown in
Fig. 4(b).

Obviously, the proposed model has the ability of using low-cost
factors to assist or replace high-cost factors to evaluate eutrophication.
In addition, it also has an excellent performance in calculating speed
and accuracy if it integrates an efficient SSC algorithm. Thus, we expect
that the proposed model can overcome all the challengers discussed in
Section 1 and be a promising tool for practical eutrophication evalua-
tion.

4. Experimental results and discussions

4.1. Dataset

A total of 587 pieces of data are collected in the experiments.
Table 4 lists some representative data with 11 factors (condition attri-
butes) and one Rank (decision attribute). The ranks of data are labeled
according to TGWEQA-TGR. In order to analyze the correlations be-
tween Rank and each factor, we perform correlation analysis to conduct
the correlation coefficient. Meanwhile, the correlations between one of
the three factors (TP, TN, CODMn) and each factor are also analyzed
respectively within the condition attributes. The results are shown in
Table 5. According to Table 5, we find that the correlations between
these parameters are statistically significant at a significance level
α= 0.05.

4.2. Cross validation analysis

In the experiments, we use a 5-fold cross-validation strategy to

Table 3
The evaluation grades of eutrophication for TGR.

Rank TLI(Σ)

1 TLI(Σ)≤ 30
2 30< TLI(Σ) ≤ 50
3 50< TLI(Σ) ≤ 60
4 60< TLI(Σ) ≤ 70
5 TLI(Σ) > 70

Fig. 3. Flowchart of the proposed model for eu-
trophication evaluation.
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determine the final performances of the proposed model. First, the
dataset is randomly split into five folds, each of which contains 20% of
the instances. Then, four folds are selected to use as the TR and the
remaining one forms the TS. After that, the TR is divided into labeled
part L and unlabeled part U by using a random stratified selection,
which means that the selected number of instances for each rank is
proportional to the number of them in the TR. Besides, we will ensure
that at least one representative instance of each rank is selected in the L.
The value of L/TR is called as the ratio of labeled data. Thus, each data
is divided into three parts: L, U, and TS (L and U form TR). Subsequently,
the proposed model is trained on the TR, and then is tested on the U
(transductive) and the TS (inductive). Since there are some random
operations during the stratified selection, we will repeat the training
and testing processes for three times. The above steps will be executed
five times to ensure that each fold can serve as the TS once.

In order to quantitatively evaluate the performance of the proposed
model, two quantities of Accuracy and Standard Deviation are computed
respectively. The computing formulas are shown as below:

∑= =
=

=Accuracy
n

ψ ω f X ψ ω f X1 ( , ( )), ( , ( )) {k
k i

n

i i else
if ω f X

1
0,
1, ( )

k
i

(8)

∑=
=

Accuracy Accuracy1
5 k

k
1

5

(9)

∑= −
=

Standard Deviation Accuracy Accuracy1
5

( )
k

k
1

5
2

(10)

where k∊{1,2,…,5}, Xi represents one piece of data, ω indicates the real
rank value of Xi, f(Xi) is the predicted rank value of Xi based on the
proposed model, and nk is the number of Xi for each evaluation.
Accuracy represents the predictive ability and Standard Deviation re-
presents the robustness of the proposed model.

4.3. Experiments and results

First, the behaviors of the proposed model are analyzed under the
conditions of missing some factors and different ratio of labeled data.
The situations of missing some factors consist of missing Chl-a, SD, TP,
TN, and CODMn respectively, i.e., the case illustrated in Fig. 4(a). The
ratio of labeled data is ranged from 10% to 50%. The proposed model
with Co-forest is compared with the Random Forest. The proposed model
represents the side with an SSC idea and Random Forest which is the
base classifier of Co-forest represents the side without an SSC idea. The

Fig. 4. A case of eutrophication evaluation based on the proposed model.

Table 4
Some representative data.

Record Chl-a SD TP TN CODMn T Cond. pH DO SS NH3-N Rank

1 1.06 5 0.022 1.258 1.11 23.8 286.5 7.85 8.32 4 0.081 1
2 1.54 2 0.064 1.466 1.37 20.1 285.7 8.19 8.27 5.5 0.143 2
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
585 7.89 1.5 0.066 2.12 3.1 18.3 484 8.48 7.28 26 0.37 3
586 46.27 2 0.179 0.862 3.4 22.5 321.8 8.6 8.56 21 0.314 4
587 138 0.5 0.232 1.44 6 25 394 9.42 12.38 19 0.413 5

Table 5
The results of correlation analysis.

Parameters Chl-a SD TP TN CODMn T Cond. pH DO SS NH3-N

Rank 0.612 −0.456 0.713 0.646 0.751 0.090 0.218 0.103 0.086 0.275 0.542
TP 0.472 −0.295 1.000 0.811 0.678 −0.045 0.313 −0.105 −0.104 0.152 0.746
TN 0.495 −0.307 0.811 1.000 0.667 −0.031 0.310 −0.131 −0.153 0.162 0.771
CODMn 0.618 −0.457 0.678 0.667 1.000 0.152 0.314 −0.029 −0.094 0.229 0.603
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recommended values of parameters for Co-forest and Random Forest are
chosen according to the original paper, i.e., confidence threshold θ is
0.75 and number of random trees N is 6. The obtained results of Ac-
curacy and Standard Deviation on transductive and inductive settings are
shown in Tables 6 and 7 respectively. Where the proposed model per-
forms better than Random Forest are highlighted in bold.

According to Tables 6 and 7, there are two observations that we can
conclude preliminarily: (1) The models with one missing factor have
similar performances as that without missing factor except for the case
of missing Chl-a. The reason can be ascribed to the maximal weight of
Chl-a in TGWEQA-TGR. (2) The proposed model generally gives better
results than Random Forest.

In order to further analyze the significant differences between
Random Forest and the proposed model, we perform non-parametric
pairwise comparison procedures to conduct the statistical analysis.
Concretely, the Wilcoxon signed-ranks test (Wilcoxon, 1945) is applied
to realize it. Table 8 records the statistical results in the aspect of
missing different factors. Table 9 records the statistical results in the
aspect of different ratio of labeled data. In Tables 8 and 9, three para-
meters show the achieved rankings R+ and R− values and their as-
sociate p-value. We have checked whether the proposed model out-
performs Random Forest under the condition of significance level
α = 0.1 and the accepted hypotheses are highlighted in bold.

According to Tables 8 and 9, two observations are concluded: (1) In
either situation, the statistical results accept the hypothesis that the
proposed model has higher Accuracy than Random Forest in most cases.
Although there are three cases that the hypothesis is not accepted, the
proposed model also achieves the higher R+ rankings of Accuracy than
Random Forest, which reflects that the proposed model performs slightly
better. (2) In the aspect of missing different factors, the proposed model
achieves significantly or slightly better Standard Deviation than Random
Forest. Meanwhile, in the aspect of different ratio of labeled data, the
proposed model also has significantly or slightly better Standard De-
viation than Random Forest in most cases. The two cases that the pro-
posed model has lower R+ rankings of Standard Deviation than Random
Forest may be explained by one major reason. That is the random se-
lection operation during the learning process.

In summary, the experimental results demonstrate two conclusions:

(1) The proposed model can realize the eutrophication evaluation under
the condition of having a small amount of data without missing factor
and a large amount of data with missing some factors. (2) The proposed
model has a better performance than Random Forest, which means that
SSC is a suitable tool to improve the performance of an eutrophication
evaluation model trained only on a small amount of data without
missing factor.

4.4. Discussions

Some reports indicate that eutrophication is not only connected
with the five key factors (Chl-a, SD, TN, TP, and CODMn), but also has
relationships with some other factors (T, Cond., pH, DO, SS, and NH3-N)
(Giusti et al., 2011; Wu et al., 2013). Due to the different monitoring
principles, the costs of collecting these factors are different. For ex-
ample, T, Cond., pH, DO, SS, and NH3-N can be collected easily by using
the online sensors, while TN, TP, and CODMn are relatively difficult to
collect because they demand the complicated pretreatment processes.
Thus, we will research whether we can exploit the low-cost factors to
assist the eutrophication evaluation under the condition of missing
some high-cost factors, i.e., the case illustrated in Fig. 4(b).

First, we analyze the behaviors of the proposed model with missing
three high-cost factors (TN, TP, and CODMn) and the results are re-
garded as the baseline for later comparisons. Next, one of the low-cost
factors (T, Cond., pH, DO, SS, and NH3-N) is respectively added into the
experiments to test whether it has assistance on the eutrophication
evaluation. The results are recorded in Table 10, where the adding has
assistance are highlighted in bold.

According to Table 10, we can preliminarily find that the perfor-
mances of respective adding of pH, DO, and NH3-N are better than the
baseline. Furthermore, the performances of adding NH3-N are best.
Subsequently, other three kinds of adding factors are tested. They are
adding DO and NH3-N, adding pH and NH3-N, and adding DO, pH and
NH3-N. The results are also recorded in Table 10. In order to further
analyze the different performances achieved by adding different fac-
tors, we perform the Friedman test (Demšar, 2006) with the sig-
nificance level α= 0.1 to conduct the statistical analysis and the results
are recorded in Table 11.

Table 8
The results of Wilcoxon signed-ranks test with a significance level α = 0.1 in the aspect of missing different factors: the proposed model VS. Random Forest.

Missing factor Transductive Inductive

Accuracy Standard Deviation Accuracy Standard Deviation

R+ R- p-value R+ R- p-value R+ R- p-value R+ R- p-value

No 14 1 0.0625 9 6 0.4063 11 4 0.2188 10 5 0.3125
Chl-a 14 1 0.0625 10 5 0.3125 11 4 0.2188 8 7 0.5000
SD 15 0 0.0313 12 3 0.1563 15 0 0.0313 14 1 0.0625
TP 15 0 0.0313 12 3 0.1563 13 2 0.0938 10 5 0.3125
TN 15 0 0.0313 15 9 0.0313 15 0 0.0313 12 3 0.1563
CODMn 15 0 0.0313 13 2 0.0938 15 0 0.0313 9 6 0.4063

Table 9
The results of Wilcoxon signed-ranks test with a significance level α = 0.1 in the aspect of different ratio of labeled data: the proposed model VS. Random Forest.

Ratio of labeled data Transductive Inductive

Accuracy Standard Deviation Accuracy Standard Deviation

R+ R- p-value R+ R- p-value R+ R- p-value R+ R- p-value

10% 21 0 0.0156 15 6 0.2188 21 0 0.0156 21 0 0.0156
20% 20 1 0.0313 18 3 0.0781 21 0 0.0156 18 3 0.0781
30% 19 2 0.0469 20 1 0.0313 19 2 0.0469 16 5 0.1563
40% 21 0 0.0156 17 4 0.1094 21 0 0.0156 6 15 0.8438
50% 21 0 0.0156 14 7 0.2813 13 8 0.3438 7 14 0.6563
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According to Table 11, the Friedman test shows that there are sig-
nificant differences in the Accuracy and Standard Deviation. Note that
the higher value indicates the better performance. On transductive, we
observe that any situation of adding factor has higher value of Accuracy
than the baseline, while only the situation of adding NH3-N has higher
value of Standard Deviation than the baseline. On inductive, we observe
that the four situations of adding factor (adding NH3-N, adding DO and
NH3-N, adding pH and NH3-N, and adding DO, pH and NH3-N) have
both higher values of Accuracy and Standard Deviation than the baseline.
Furthermore, we can find that the situation of adding NH3-N has the
highest values of Accuracy and Standard Deviation, no matter on trans-
ductive or inductive.

In summary, the results of Friedman test demonstrate two conclu-
sions under the condition of missing TN, TP, and CODMn: (1) Six si-
tuations of adding factor have assistance on the eutrophication eva-
luation. They are adding pH, adding DO, adding NH3-N, adding DO and
NH3-N, adding pH and NH3-N, and adding DO, pH and NH3-N respec-
tively. (2) The situation of adding NH3-N has the most assistance among
the six situations.

The above two conclusions may be explained from the aspects of
ecology and environment: (1) NH3-N not only is a part of the TN but
also has the direct relationship with TN. Adding the NH3-N can directly
help the proposed model to learn more information about the eu-
trophication. Thus, the situation of adding NH3-N has the most assis-
tance for the proposed model to evaluate eutrophication. (2) DO and pH
have indirect relationship with Chl-a because they will change ac-
cording to Chl-a. Adding DO and pH actually input more information of
Chl-a into the proposed model indirectly. Moreover, the Chl-a has the
maximal weight in TGWEQA-TGR. Therefore, the situations of adding
DO and pH have some assistance on the eutrophication evaluation. (3)
Eutrophication actually is greatly affected by different seasons. The
seasonal information is indicated by T. Obviously, we expect that
adding T should have assistance on the eutrophication evaluation.
However, the experimental results show that there is no significant
improvement on the performance after adding T. The reason may be
found from the data which are obtained from several sampling sections
respectively located at five tributaries. The geographical difference may
have eliminated the positive influence obtained from T for the eu-
trophication evaluation. (4) Cond. is a dependent variable of SS.
Further, SS is more affected by the water flow speed. Obviously, the
water flow speed in TGR is controlled by the water level. As a result,
Cond. and SS are more related with water level. Consequently, the si-
tuations of adding Cond. and SS have no assistance on the eutrophica-
tion evaluation.

4.5. Differences between the proposed model and some previous related
models

Recently, we have made extensive research on the eutrophication inTa
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The average values of rankings computed by Friedman test on Table 10.

Adding factor Transductive Inductive

Accuracy Standard
Deviation

Accuracy Standard
Deviation

No 2.20 7 4 3.6
T 3.20 6.8 3.2 6
Cond. 3.00 3.2 3.6 6
pH 5.80 5.4 5.2 3.4
DO 5.20 5.8 5.2 3.6
SS 3.80 4.6 2 6.4
NH3-N 9.20 8 9.2 8.8
DO/NH3-N 8.60 6.2 8 4.6
pH/NH3-N 6.10 5.7 8.2 5.8
DO/pH/NH3-N 7.90 2.3 6.4 6.8
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TGR and realized several evaluation models based on different
methods. They are spatial and temporal relation rule acquisition based
model (STRRA) (Yan et al., 2016b), rough set and multidimensional
cloud model based model (RSMCM) (Yan et al., 2017), and rough set
and petri nets based model (RSPN) (Yan et al., 2016a). STRRA model
achieves the spatial and temporal relation rule acquisition of eu-
trophication without any prior knowledge. Yet it fails to properly cope
with the data with randomness and fuzziness, which is solved by in-
troducing multidimensional cloud model into the eutrophication eva-
luation in RSMCM model. However, there is a problem in the above two
models: the searching of knowledge is very time-consuming in the
context of massive data. In this regard, RSPN realizes the fast knowl-
edge inference by using the parallel processing mechanism of petri nets
and the knowledge reduction ability of rough set. While the premise of
establishing the above three models is that the data must be complete
without any missing. As discussed in Sections 3 and 4, we know that the
proposed model can not only accomplish the eutrophication evaluation
under the condition of missing some high-cost factors, but also exploit
some other low-cost factors to further improve its performance of eu-
trophication evaluation, which is the biggest difference between the
proposed model and the three models of STRRA, RSMCM, and RSPN.
Thus, we summarize the properties of these eutrophication evaluation
models in Table 12.

4.6. Possible extensions

Although the proposed model has shown the promising prospect,
there are several open issues should be considered. For example, are
there some other low-cost factors that can be used to achieve our
proposed mode? In addition, how to improve our proposed model’s
performance of eutrophication evaluation can be further studied.
Lastly, it is unknown whether our proposed mode can be applied to
other environmental fields. Therefore, in the future, we plan to test
whether meteorological factors and geographic factors can be used to
achieve our proposed mode at first. Subsequently, we will take ad-
vantage of ensemble technology (Rokach, 2010) to further improve our
proposed model. Finally, we will extend our proposed model to the
online water quality monitoring system first and then apply it in water
resource management (Luo et al., 2013), flood management (Luo et al.,
2015a,b), and water quality assessment (Li et al., 2012, 2011).

5. Conclusions

In this paper, we propose to use the SSC to achieve a powerful eu-
trophication evaluation. To the best of our knowledge, this paper is the
first one to analyze eutrophication by using the SSC technology. The
proposed model is different from the traditional environmental and
ecological eutrophication analysis because it is completely data-driven.
Concretely, a case study in TGR of China is conducted to demonstrate
the validity of the proposed model. Experimental results clearly reflect
the fact that the proposed model can achieve a high performance eu-
trophication evaluation model under the condition of having a small
amount of data without missing factor and a large amount of data with
missing some factors. Besides, we also demonstrate that the proposed
model can exploit the low-cost factors (pH, DO, and NH3-N) to assist the

eutrophication evaluation under the condition of missing some high-
cost factors (TN, TP, and CODMn). Thus, the proposed model has the
advantages of high computational efficiency, high accuracy, and ex-
cellent ability of exploiting low-cost factors to assist or even replace
high-cost factors to achieve eutrophication evaluation. We expect that
the proposed model will have practical application in environmental
protection sooner or later.
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