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Abstract—Self-labeled technique, a paradigm of semisu-
pervised classification (SSC), is highly effective in allevi-
ating the shortage of labeled data in classification tasks
via an iterative self-labeling process. Although existing self-
labeled SSC models show great prospect in industrial appli-
cations, they suffer from performance degeneration caused
by false-positive label-predictions of unlabeled data during
the iterative self-labeling process. For addressing this is-
sue, this paper proposes a novel SSC framework, which is
highly compatible with most existing self-labeled SSC mod-
els. The main idea of this framework is to incorporate a
differential-evolution-based positioning optimization algo-
rithm for classification into the iterative self-labeling pro-
cess, aiming at optimizing the positioning of newly labeled
data. Specifically, five representative self-labeled SSC mod-
els with different characteristics are modified based on the
proposed framework to check their performances. Experi-
mental results on 45 benchmark datasets demonstrate that
the proposed framework is highly compatible with tested
self-labeled SSC models, and significantly effective in im-
proving their performances.

Index Terms—Differential evolution (DE), general frame-
work, industrial application, positioning optimization, self-
labeled, semi-supervised classification (SSC).

Manuscript received June 15, 2017; accepted July 25, 2017. Date of
publication August 9, 2017; date of current version March 1, 2018. This
work was supported in part by the National Key Research and Develop-
ment Program of China under Grant 2017YFC0804002, in part by the Na-
tional Natural Science Foundation of China under Grant 61702475, Grant
61772493,Grant 91646114, Grant 61602434, and Grant 51609229, and
in part by the Pioneer Hundred Talents Program of Chinese Academy
of Sciences. Paper no. TII-17-1273. (Di Wu and Xin Luo contributed
equally to this work.) (Corresponding authors: Guoyin Wang and Ming-
sheng Shang.)

D. Wu and Y. Yuan are with the Chongqing Key Laboratory of Big Data
and Intelligent Computing, Chongqing Institute of Green and Intelligent
Technology, Chinese Academy of Sciences, Chongqing 400714, China,
and also with the University of Chinese Academy of Sciences, Beijing
100049, China (e-mail: wudi@cigit.ac.cn; yuanye@cigit.ac.cn).

X. Luo, G. Wang, and M. Shang are with the Chongqing Key
Laboratory of Big Data and Intelligent Computing, Chongqing In-
stitute of Green and Intelligent Technology, Chinese Academy of
Sciences, Chongqing 400714, China (e-mail: luoxin21@cigit.ac.cn;
wanggy@ieee.org; msshang@cigit.ac.cn).

H. Yan is with the School of Computer Science and Information En-
gineering, Chongqing Technology and Business University, Chongqing
400067, China (e-mail: yanhuyong@cigit.ac.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2017.2737827

I. INTRODUCTION

C LASSIFICATION is an active research problem in data
mining and machine learning communities [1]. So far,

classification has been widely and frequently used in industrial
applications, including fault diagnosis, mineral resources ex-
ploration, face recognition, power system security, etc. [2]–[5].
Classification tasks rely heavily on the training data with class
labels to achieve an efficient classifier, which can accurately
assign labels to previously unseen data. However, it is difficult
to obtain sufficient labeled data to build an efficient classifier
because of the technical support from experts and the long time
consumption of manual data labeling. In addition, data without
labels are often abundant in real applications. Under such cir-
cumstances, traditional classification methods often fail to learn
an appropriate classifier relying on labeled data only [6]. As a
result, there is a rapidly growing demand for semi-supervised
classification (SSC) in industrial applications because it is a
learning paradigm aiming at improving the performances of tra-
ditional classifiers by using the abundant unlabeled data [7], [8].
Hence, SSC is a suitable data processing method for industrial
applications.

SSC has been deeply investigated by prior researchers owing
to its effectiveness in alleviating the shortage of labeled data.
According to the development of SSC approaches, they can
generally fall into four categories:

1) Generative models [9], [10]: These models are able to in-
corporate unlabeled data to extend supervised generative
models and use techniques such as the expectation max-
imization algorithm to estimate model parameters and
labels.

2) Graph-based models [11]–[13]: These models are able to
map both the labeled and unlabeled data into a unique
graph, where the unlabeled data are assigned class labels
based on its topology characteristics.

3) Semisupervised support vector machines (SVMs) [14],
[15]: They are able to maximize the margin between
labeled and unlabeled data by adapting to the hyper plane
of SVM and the labels of unlabeled data.

4) Self-labeled models: These models are able to take advan-
tage of a supervised classifier to label data automatically
without making any specific hypothesis about input data
[7]. Self-labeled models can be further divided into two
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groups, i.e., self-training methods (STMs) [16]–[19] and
cotraining methods (CTMs) [20]–[26].

It is well known that SSC models exploit unlabeled data to
enhance the final performance of a classifier, particularly when
the number of labeled instances is low [7]. However, they are
restricted by the number of labeled instances and their distribu-
tion as well as the outliers. As a result, cases that unlabeled data
degrade the performance of classifiers with SSC are frequently
discussed in prior research works [27]–[31].

For self-labeled models, if unlabeled data are predicted with
false-positive labels during the iterative self-labeling process,
they would be impaired instead of being improved. Hence, it is
vital to control the negative effects caused by unlabeled data. In
order to address this issue, two fundamental methods, i.e., the
data editing based methods [16], [32]–[35] and disagreement
mechanism maintain based methods [21], [25], [36] are pro-
posed. However, these methods may become ineffective under
some circumstances. For instance, for the data editing-based
methods, they employ specifically designed strategy such as
nearest neighbor rule-based data editing method [32] to control
the performance degeneration caused by false-positive label-
predictions of unlabeled data, which cannot be easily extended
to other self-labeled SSC models. Additionally, for the syn-
thetic data-based method [36], the problem of false-positive
label-predictions of unlabeled data may still exist in the iter-
ative self-labeling process whilst the additional synthetic data
lead to the increase of computational burden.

Differential evolution (DE), which is an evolutionary algo-
rithm, is simple to implement, reliable, and fast. Meanwhile,
it is significantly efficient and robust in solving global numer-
ical optimization problems [37]. Therefore, it has been widely
used in industrial compressor supply system [38], medical im-
age registration [38], data reduction [39], etc. Recently, it has
been successfully used for optimizing the positioning of data
[40]. Here, optimizing the positioning of data means optimally
adjusting the attributes values of data. Subsequently, we find
that the controlling of negative effects caused by unlabeled data
for self-labeled SSC models can also be viewed as a position-
ing optimization problem of data. Thus, we expect that DE is a
suitable method to achieve the controlling for self-labeled SSC
models.

This work aims to construct a general framework, which is
highly compatible with any self-labeled SSC model, to alleviate
the weaknesses caused by unlabeled data during the iterative
self-labeling process. To do so, we innovatively propose to in-
corporate a DE-based positioning optimization algorithm for
classification (DE-POAC) into the iterative self-labeling pro-
cess, aiming at optimizing the positioning of newly labeled data
before they are added into the labeled set. Here, the newly la-
beled data means unlabeled data labeled by classifiers during
the self-labeling process and optimizing the positioning means
optimally adjusting the attributes values. We name the proposed
framework as DE-SSC. Five representative self-labeled SSC
models with significantly different characteristics are modified
to check the performances of this novel DE-SSC framework. De-
tailed experiments on 45 benchmark datasets extracted from the
University of California Irvine (UCI) [41], knowledge extraction

evolutionary learning (KEEL) [42], and book [43] repositories
are carried out to compare the performances between the origi-
nal models and their modified versions based on DE-SSC. The
compared results clearly validate the efficiency of the DE-SSC
in controlling unlabeled data for self-labeled SSC models to
achieve strong generalization ability. The main contributions of
this work include the following.

1) DE-SSC framework, which is able to alleviate the nega-
tive effects brought by unlabeled data during the iterative
self-labeling process and compatible with most of the
existing self-labeled SSC models.

2) Detailed algorithm design and analysis for DE-SSC.
3) Detailed empirical studies conducted on 45 benchmark

classification datasets, along with analyses regarding the
experimental results.

To the authors’ best knowledge, such efforts have never been
seen in any prior work.

The rest of the paper is organized as follows: Section II in-
troduces the SSC problem. Section III presents the DE-SSC
framework. Section IV provides and discusses the experimental
results. Finally, Section V concludes this paper.

II. SELF-LABELED SEMISUPERVISED CLASSIFICATION

A. Semisupervised Classification

In SSC, a sample of data is described with a D-
dimensional vector of attributes plus on class label as Xi = (X1

i ,
X2

i , . . . , Xd
i , . . . , XD

i , ω), where Xi is the ith instance of all
the data, d ∈ {1, 2, . . . ,D} is the dth feature of Xi , and ω in-
dicates that Xi belongs to a class ω. L is the labeled set with
ω known and consists of NL instances. U is the unlabeled set
with ω unknown and consists of NU instances. Particularly, for
a typical SSC problem, L ∪ U forms the training set TR under
the condition of NU >> NL . In addition, there are some unseen
data which have the same characteristics as Xi with ω unknown
to form the testing set TS . The purpose of SSC is to learn a better
classifier C by using TR instead of only using L to predict the
class labels of unlabeled data (transductive, U ) or unseen data
(inductive, TS ).

B. Self-Labeled SSC Models: Related Work

Self-labeled models are effective in solving SSC problems
[7]. They can be divided into two groups, i.e., STMs [16]–[19]
and CTMs [20]–[26]. In STMs, a classifier keeps on labeling
unlabeled data and retraining itself on an enlarged L iteratively.
STMs have been successfully applied to many industrial ap-
plications such as word sense disambiguation and subjective
nouns [7], [17]. However, STMs may label some unlabeled data
with false-positive label-predictions in some cases, which will
degrade the performance of the ultimate classifier. In order to
deal with this issue, Li and Zhou utilized a specific data editing
method based on the local-cut-edge-weight statistic to identify
the unlabeled data with false-positive label-predictions [16].

On the other hand, in CTMs, the attributes of data are split into
two conditionally independent views to train a single classifier,
respectively. The two classifiers cooperate to predict the labels of
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unlabeled data [20]. Advanced approaches, which do not require
explicit attributes splits, also were proposed by some researchers
[22], [24], [26]. Unfortunately, the problem of false-positive
label-predictions may still exist in the iterative self-labeling pro-
cess of CTMs in some cases [32]–[35]. Deng and Guo [32] first
incorporated a nearest neighbor rule based data editing method
into tri-training algorithm [23] to discard or correct the noise or
unlabeled data with false-positive label-predictions. After that,
they developed their proposed algorithm by simultaneously ex-
ploiting an effective data editing technique to identify possible
unlabeled data with false-positive label-predictions and an adap-
tive strategy to control the validity of editing operation [33]. In
addition, they used the same technology to achieve a new co-
forest algorithm [24] with adaptive data editing to improve the
performance of original proposal [34]. In fact, the key strategy
of CTMs is that a large disagreement between base classifiers
must be maintained during the iterative self-labeling process
[25]. Zhou et al. empirically analyzed the mechanism [21] and
proposed a new CTMs style algorithm based on data editing. In
details, data editing techniques are incorporated into the itera-
tive self-labeling process to improve the quality of the TR by
identifying and eliminating unlabeled data with false-positive
label-predictions [35].

Recently, Triguero et al. proposed a framework for self-
labeled SSC models to improve the classification performance
by incorporating the synthetic labeled data into the iterative self-
labeling process [36]. In fact, the purpose of using synthetic la-
beled data is to introduce diversity into multiple classifiers and
fulfill the distribution of labeled data.

III. DE-SSC FRAMEWORK

A. DE-SSC

Although each self-labeled SSC model works in a different
way, they are very similar or at least share some operations.
Thus, the proposed DE-SSC framework is designed to be as
flexible as possible for any self-labeled SSC model. Fig. 1 de-
picts the flowchart of the DE-SSC framework.

The first step is initialization. There are some objects, in-
cluding initial L, iteration stopping criteria, and optimized pa-
rameters, must be initialized at the beginning. The second step
is the iterative self-labeling process, which is vital for a self-
labeled SSC model. Generally, STMs employ one classifier and
CTMs employ two or more than two classifiers to predict the
class labels of unlabeled data. Thus, they can be generalized
as using a set of n classifiers Ck , k ∈ {1, n}, to achieve the
predictions. Each Ck is trained on the initial L. Meanwhile, dif-
ferent self-labeled methods adopt different strategies to select
the high-confidence unlabeled data from U . Then, the learned
n classifiers of Ck are exploited to label the selected unla-
beled data. After that, a specific and different strategy is used
by different self-labeled methods to determine high-confidence
unlabeled data as newly labeled data to form a newly labeled set
L′. However, L′ may contain some unlabeled data with false-
positive label-predictions because of the small initial number
of labeled instances and their unrepresentative distributions as
well as the existence of outliers. If L′ is directly added into
L, it will bring negative influences to the iterative self-labeling

Fig. 1. Flowchart of the DE-SSC framework for any self-labeled
SSC model.

process. Thus, the function DE-POAC (L′, L) derived from the
DE-POAC algorithm is employed to optimally adjust the at-
tributes values for each instance of L′ under the supervision of
initial L. After that, we obtain an optimized L′ and then add it
into L to enlarge the labeled data. The above operations of the
second step are repeated until satisfying the stopping criteria
which depend on the specific self-labeled SSC method. Finally,
the third step will output the final n classifiers of Ck which are
learned from the enlarged L. The final n classifiers of Ck then
can be applied to classify the unlabeled data (transductive, U )
or unseen data (inductive, TS ).

B. DE-POAC Algorithm

Next, we present the function DE-POAC (L′, L) in detail first
and then conclude the pseudocode of the DE-POAC algorithm.

The function DE-POAC (L′, L) starts with an initial dataset
L′ with N instances, where each one is called a “target vector”
with a D-dimensional attributes plus on class label as

Xi,g =
([

X1
i,g , X2

i,g , . . . , Xd
i,g , . . . , X

D
i,g

]
, ω

)
(1)

where i ∈ {1, 2, . . . , N} stands for the ith instance, d ∈
{1, 2, . . . ,D} stands for the dth attribute, ω indicates that Xi,g

belongs to a specified class ω, and g ∈ {1, 2, . . . , G} stands
for the gth generation with G denoting the generation upper
bound, respectively. Given the dataset L, where each instance
has the same size as Xi,g , the function DE-POAC (L′, L) aims



912 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 3, MARCH 2018

at obtaining an improved dataset L′ by adjusting each X ′
i,g s

attributes values under the supervision of L. The function
DE-POAC (L′, L) mainly relies on three operators, i.e., mu-
tation, crossover, and selection. It is noted that the appropriate
strategies and its associated parameters are important to the
three operators. Triguero et al. [40] have systematically studied
the DE to optimally adjust the attributes values or position-
ing of data. Thus, we choose the recommended strategies and
its associated parameters as discussed in [40] for the function
DE-POAC (L′, L).

Mutation: It is the prime operator of function DE-POAC
(L′, L). It generates a mutant vector Vi,g for each target vector
Xi,g at the current generation g. Among the frequently men-
tioned mutation strategies, we choose the DE/ Rand/ 1 owing
to its popularity and robustness [39]. DE/ Rand/ 1 generates the
mutant vector Vi,g as follows:

Vi,g = Xr1,L + Fi · (Xr2,L − Xr3,L ) (2)

where Fi is the scaling factor which positively controls the scal-
ing of different vectors; Xr1,L , Xr2,L , and Xr3,L are randomly
selected from L and belong to the same class as Xi,g . When
there are not enough instances having the same class label as
Xi,g in L, we artificially generate the necessary number of new
instances Xrm ,L , m ∈ {1, 2, 3}, with the same class label as
Xi,g as follows:

Xrm ,L =
([

X1
i,g + rand[−0.1, 0.1], X2

i,g + rand[−0.1, 0.1], . . . ,

Xd
i,g + rand[−0.1, 0.1]

]
, . . . , XD

i,g + rand[−0.1, 0.1]
]
, ω

)

(3)

where rand [–0.1, 0.1] denotes picking a random real number
from the [–0.1, 0.1] interval.

Crossover: The target vector Xi,g and its corresponding
mutant vector Vi,g are subject to the crossover operation to
generate a new trial vector Ui,g . There are three kinds of
crossover schemes, i.e., binominal, exponential, and arithmetic,
and we focus on the arithmetic crossover. Concretely, the
DE/ CurrentToRand/ 1 strategy [44] is used to generate the trial
vector Ui,g , which linearly combines the target vector Xi,g and
the corresponding mutant vector Vi,g as follows:

Ui,g = Xi,g + K · (Vi,g − Xi,g ) (4)

where K ∈ [0, 1] is a random number. Next, let us bring formula
(2) into formula (4) and then simplify it

Ui,g = Xi,g + K · (Xr1,L − Xi,g ) + Fi · (Xr2,L − Xr3,L ).
(5)

It is noted that formula (5) only produces modifications in the
attributes of data. Thus, each trial vector Ui,g has the same class
label as each corresponding target vector Xi,g throughout the
mutation and crossover operators. However, we should check
whether there have been values of Ud

i,g that are out of range
[min(Xd

i,g ),max(Xd
i,g )]. If a computed value of Ud

i,g is greater
than max(Xd

i,g ), then we set it as max(Xd
i,g ), else if it is lower

than min(Xd
i,g ), then we set it as min(Xd

i,g ).
Selection: After mutation and crossover operators are applied

to all the target vectors Xi,g of L′, a dataset that consists of

N number of trial vectors Ui,g is obtained. We represent it as
L′

DE. The selection operator decides which dataset of L′ or L′
DE

should survive in the next generation g + 1:

L′ =

{
L′

DE if accuracy (L′
DE) >= accuracy (L′);

L′ otherwise.
(6)

In formula (6), any classification algorithm, likes K-nearest
neighbor (KNN) [45] or SVM [46], can be used to evaluate the
classification accuracy. As a result, the performance of the next
generation g + 1 is always better than, or at least same as, the
current generation g. Finally, an improved dataset L′ is obtained
after applying the function DE-POAC (L′, L).

From formula (5), we note that the setting of scaling factor Fi
decides the convergence speed and the optimal performance of
function DE-POAC (L′, L). Neri and Tirronen proposed a scale
factor local search in DE (SFLSDE) algorithm to self-adaptively
set the value of scaling factor Fi for DE [47]. Triguero et al.
[39], [40] have exploited SFLSDE to obtain a valuable result. In
order to guarantee a high-quality DE-POAC, we also employ the
SFLSDE to determine the value of scaling factor Fi as follows:

Fi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

SFGSS if rand3 < τ2;
SFHC if τ2 ≤ rand3 < τ3;
Fl + Fu · rand1 if rand2 < τ1 and rand3 > τ3

Fl + Fu · rand1 if rand2 ≥ τ1 and rand3 > τ3

(7)

where rand1, rand2, and rand3 are uniform pseudorandom num-
bers between 0 and 1; τ1, τ2, and τ3 are constant threshold
values. According to [47], all these parameters in formula (7)
are recommended to set as SFGSS = 8, SFHC = 20, Fl =
0.1, Fu = 0.9, τ1 = 0.1, τ2 = 0.03, τ3 = 0.07, and Fi is
initialized to a random value between 0 and 1.

Obviously, the function DE-POAC (L′, L) means that the
original dataset L′ is optimized by the DE-POAC algorithm un-
der the supervision of L. Thus, the pseudocode of DE-POAC
algorithm can be concluded in Table I, where function Learn
(C, L′) means learning a classifier C based on dataset L′

and function Evaluate(C, L) means evaluating the classifica-
tion accuracy of classifier C on the dataset L. For analyzing
the computational complexity of the DE-POAC algorithm, let
Θ(C) denotes the computational cost of classifier C. As ana-
lyzed in Table I, the computational complexity of the DE-POAC
algorithm is

T = Θ(C) + G × N × Θ(C) = Θ(C) × (1 + G × N)

= Θ(C) × G × N = Θ(C × G × N). (8)

From formula (8), we obtain that the classifier C and the
maximum subsequent generations G play key roles in deciding
the computational complexity of the DE-POAC algorithm.

IV. EXPERIMENTS AND RESULTS

A. Compared Algorithms With Parameter Settings

As shown in Fig. 1, DE-SSC is compatible with any self-
labeled SSC model. In order to test its performance, five
representative self-labeled SSC algorithms, i.e., self-training,
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TABLE I
ALGORITHM DE-POAC

Input: L′, L, Learn, G

Code: Cost

1. g = 0 Θ(1)
2. Learn (C, L′) Θ(C)
3. AccuracyL ′ = Evaluate(C, L)
4. while AccuracyL ′ < 1 and g < G do ×Gmax
5. for i = 1 to N do (N instances of L′) ×N
6. compute Fi by formula (7) Θ(1)
7. generate Ui,g by formula (5) Θ(1)
8. L′

DE (i) = Ui,g Θ(1)
9. end for –
10. Learn (C ′,L′

DE ) Θ(C)
11. AccuracyL ′

D E
= Evaluate(C ′, L)

12. if AccuracyL ′
D E

> AccuracyL ′ Θ(1)
13. AccuracyL ′ = AccuracyL ′

DE
Θ(1)

14. L′ = L′
DE Θ(1)

15. end if –
16. g = g + 1 Θ(1)
17. end while –
18.return L′ –

Output: Optimized dataset L′

tri-training [23], coforest [24], SSFCM-SVM [19], and SEG-
SSC [36] are chosen to integrate into it. The five algorithms
have different characteristics, including initialization schemes,
learning strategies, and selection mechanisms of determining
high-confidence unlabeled data. A brief description about the
five self-labeled SSC algorithms and their associated base clas-
sifiers are given below.

1) KNN: It is an instance-based classification learning al-
gorithm and belongs to the lazy learning family. The
function is only locally approximate and all computation
is deferred until classification [45]. As a result, it com-
monly relies on the Euclidean distance between a test
sample and the specified training samples without build-
ing a model during the learning process. For self-labeled
SSC models, they can be incorporated into the iterative
self-labeling process to play the role of base classifiers.

2) SVM: It is a powerful machine learning technique with
excellent generalization performance based on the prin-
ciple of structural risk minimization. It can solve linearly
nonseparable problems by using kernel tricks [46]. For
self-labeled SSC models, it can also be incorporated into
the iterative self-labeling process to play the role of base
classifiers. We will choose the library for support vec-
tor machines [48] to achieve the SVM classifiers in the
experiments.

3) Self-training: We design it according to the principle of
STMs. In self-training process, the unlabeled data, which
are nearest to the labeled data, are selected to be labeled
by a classifier. After that, the classifier is retrained on an
enlarged labeled set. Each kind of classifier can be used
as the base classifier in this algorithm.

4) Tri-training [23]: It is a new CTMs style SSC algorithm,
which generates three classifiers from the initial labeled
set. These classifiers are refined by using unlabeled data

TABLE II
DESCRIPTIONS OF ALL THE PARAMETERS USED IN THE EXPERIMENTS

Mark Algorithm Parameters

/ KNN Number of neighbors = 3; Euclidean distance.
/ SVM LIBSVM: all the parameters are set as default values.
M1 Self-

training
Confidence rate = 0.2, which is computed by: (the

number of selected unlabeled instances that are nearest
to the labeled instances) / (the number of unlabeled

instances); Euclidean distance; Base classifiers: SVM
or KNN.

M2 Tri-
training

Base classifiers: SVM or KNN.

M3 Coforest Number of Fandom Forest classifiers = 6; Threshold =
0.75.

M4 SSFCM-
SVM

Threshold ε1 = 1/ (the number of classes).

M5 SEG-SSC Oversampling factor = 0.01; Base SSC model: Coforest
with the same parameters as M3.

/ DE-SSC Iteration = 100;
SF GSS = 8; SF HC = 20; Fl = 0.1; Fu =
0.9; τ1 = 0.1; τ2 = 0.03; τ3 = 0.07; Fi = a

random value between 0 and 1.

in the tri-training process. Tri-training requires neither
sufficient and redundant views nor different supervised
learning algorithms. The interchange of the base classifier
is allowed in tri-training.

5) Coforest [24]: It extends CTMs by using a well-known
ensemble method named random forest [49], which en-
ables coforest to estimate the labeling confidence of un-
labeled data and easily produce the final hypothesis. It
requires neither the data described by sufficient and re-
dundant attribute subsets nor special learning algorithms
that frequently employ time-consuming cross validation
in learning. The random tree is used as the base classifier
in this algorithm.

6) SSFCM-SVM [19]: It is an STMs style SSC algorithm
that combines clustering and classification. In particular,
a semi-supervised fuzzy c-means algorithm is integrated
into the self-training process to train a better classifier.
The SVM is used as the base classifier in SSFCM-SVM.

7) SEG-SSC [36]: This is a framework which is designed to
improve the performance of a self-labeled SSC model
based on synthetic examples generation. The purpose
of using synthetic examples is to diminish the draw-
backs occasioned by the absence of labeled data. In or-
der to read easier, the names of these self-labeled SSC
models are simplified as shown in Table II. In exper-
iments, we modify these self-labeled SSC models by
incorporating the DE-POAC algorithm into their itera-
tive self-labeling process to achieve the DE-SSC frame-
work and name them as DE-SSC+M1, DE-SSC+M2,
DE-SSC+M3, DE-SSC+M4, and DE-SSC+M5, respec-
tively. We will choose the recommended values for all the
parameters according to the original papers. To show how
the DE-SSC framework can improve the performances of
self-labeled SSC models, all the experimental conditions
and parameters are same in both the original models and
their modified versions. Table II summarizes all the pa-
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TABLE III
PROPERTIES OF ALL THE DATASETS∗

ID Name N. D. C. ID Name N. D. C.

D1 appendicitis 106 7 2 D24 hepatitis 80 19 2
D2 australian 690 14 2 D25 housevotes 232 16 2
D3 automobile 158 25 6 D26 ionosphere 351 33 2
D4 banana 5300 2 2 D27 iris 150 4 3
D5 banknote

authentic
1372 4 2 D28 led7digit 500 7 10

D6 bci 400 117 2 D29 mammographic 961 5 2
D7 breast 286 9 2 D30 monks 432 6 2
D8 bupa 345 6 2 D31 pima 768 8 2
D9 cleveland 297 13 5 D32 saheart 462 9 2
D10 coil 1500 241 6 D33 segment 2310 19 7
D11 coil2 1500 241 2 D34 sonar 208 60 2
D12 contraceptive 1473 9 3 D35 spectheart 267 44 2
D13 crx 653 15 2 D36 tae 151 5 3
D14 dermatology 358 33 6 D37 text 1500 11960 2
D15 diabetic

retinopathy
debrecen

1151 19 2 D38 titanic 2201 3 2

D16 digit1 1500 241 2 D39 usps 1500 241 2
D17 ecoli 336 7 8 D40 vehicle 846 18 4
D18 flaresolar 1066 9 2 D41 vowel 990 13 11
D19 glass 214 9 7 D42 waveform 5000 21 3
D20 g241c 1500 241 2 D43 wine 178 13 3
D21 g241n 1500 241 2 D44 wisconsin 683 9 2
D22 haberman 306 3 2 D45 yeast 1484 8 10
D23 heart 270 13 2

∗Note that the column label N. stands for instance count, D. stands for dimension count,
and C. stands for class count, respectively.

rameters used in these models. In addition, the parameters
involved in the DE-SSC framework, such as the number
of optimization iterations and the parameters needed for
setting scaling factor Fi , are also presented in Table II.

B. Datasets

Forty-five benchmark classification datasets are selected
to validate the effectiveness of the DE-SSC framework.
These datasets are extracted from the UCI [41] and KEEL
[42] repositories and can be easily downloaded together
from http://sci2s.ugr.es/keel/datasets.php. In addition, for high-
dimensional problems, eight high-dimensional datasets ex-
tracted from the book written by Chapelle et al. [43] are
also contained in the experiments, and they can be down-
loaded from http://olivier.chapelle.cc/ssl-book/benchmarks.
html. These datasets contain binary and multiclass classification
problems. The number of instances ranges from 80 to 5300,
while the number of attributes varies between 2 and 11 960
among these datasets. Most of them are real data and col-
lected from the mining industry, auto industry, financial industry,
healthcare industry, etc. Table III summarizes the properties of
all the datasets.

C. Comparisons of Classification Accuracy

In the experimental phase, we use the ten-fold cross-
validation strategy to obtain the final experimental results. First,
each dataset is split into ten folds, each of which contains 10%
of the instances. Then, nine folds are selected to use as the TR

and the remaining one forms the TS . After that, TR is divided
into labeled part L and unlabeled part U by using a random strat-
ified selection. That means the selected number of instances for
each class is proportional to the number of them in the TR . In
addition, we will ensure that at least one representative instance
of each class is selected in L. Thus, each dataset is divided into
three parts: L, U , and TS (L and U form TR ). Subsequently,
the five original self-labeled SSC models and their modified
versions are trained on TR , and then are tested on U (transduc-
tive) and TS (inductive). Since these models have some random
operations during the training process, they will be carried out
three times. The above steps will be executed ten times to ensure
that each fold can serve as the TS once.

Specifically, an initial labeled ratio of 10% is adopted over
all datasets in the experiments. For M1 and M2, two kinds of
base classifiers, KNN and SVM, are used respectively. In or-
der to eliminate the influence of attributes with different range
domains, we normalize all attributes of all the datasets to the
range [0, 1]. The obtained results of accuracy (mean ± stan-
dard deviation) on transductive setting and inductive setting are
shown in Tables IV and V respectively, where modified models
perform better than or at least same as their original versions
are highlighted in bold.

According to Tables IV and V, we observe that all of five
modified models based on the DE-SSC framework generally
achieve better results than their original versions, respectively.
That means the applications of the DE-SSC framework have
improved the generalization capacity of the models. In order to
examine the significant differences between the original meth-
ods and their modified versions, we perform nonparametric pair-
wise comparison procedures to conduct the statistical analysis.
Concretely, the Wilcoxon signed-ranks test [50] is applied to
achieve it. Tables VI and VII record the statistical results of
accuracy on transductive and inductive settings, respectively.
In Tables VI and VII, there are two columns, which show the
achieved rankings R+ and R− values and its associate p-value
for the mean and the standard deviation of accuracy, respec-
tively. We have checked whether the modified versions are able
to outperform the original versions under the condition of the
significance level α = 0.1 and the accepted hypotheses are
highlighted.

According to Tables IV–VII, there are several observations
can be concluded as follows.

1) In Tables IV–V, there are a few cases that the modi-
fied models do not improve the performances of origi-
nal models. Two major reasons can be supposed from
this phenomenon. First, the random selection process
in the realization of algorithm or the initial labeled set
is sufficient for the original models to learn. Second,
there are some unlabeled data with false-positive label-
predictions during the iterative self-labeling process in
those cases. However, regarding to most datasets, each
modified model achieves a better accuracy than its orig-
inal model on transductive and inductive settings. The
above observations validate the fact that the DE-SSC
framework has improved the performance of the origi-
nal models.
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TABLE IV
ACCURACY (MEAN ± STANDARD DEVIATION, %) OF COMPARISON MODELS IN TRANSDUCTIVE PHASE

2) In Tables VI and VII, we have analyzed the statistical
results regarding two aspects: mean of accuracy and stan-
dard deviation of accuracy. In the aspect of mean of accu-
racy, the statistical results accept the hypothesis that each
modified model outperforms its original version, respec-
tively, with a significance level α = 0.1, except for two
cases of M2 with SVM in transductive phase and M5 in
inductive phase. Although the two cases have not been
significantly improved, we can illustrate that they also
achieve higher R+ rankings than their original models,
which reflects the fact that they perform slightly better. In
another aspect of standard deviation of accuracy, we ob-
serve that the cases of M2 with SVM in transductive and
inductive phases and M4 in transductive phase have not
been improved by the DE-SSC framework. However, it
can be found that the modified models have significantly
or slightly better performances than their original models

in most cases on both transductive and inductive settings.
Thus, we can say that the modified models have better
overall robustness than original models. These conclu-
sions obtained from Tables VI and VII further support
the previous conclusions derived from Tables IV and V.

3) From Tables IV and V, we also observe that each mod-
ified model, respectively, achieves a relative stable im-
provement of accuracy longitudinally on the different
45 benchmark classification datasets in both transductive
and inductive phases. In addition, compared with all the
models horizontally, we find that M4 is most beneficial
by applying the DE-SSC framework. Especially, for ex-
ample, on the dataset D17 and in inductive phase, the
accuracy of M4 is improved from 40.08 ± 28.46 to 60.92
± 4.93, while the accuracy of M3 is improved from 66.08
± 10.18 to 66.38± 8.7. Thus, we can say that the DE-SSC
framework can provide more help for a self-labeled SSC
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TABLE V
ACCURACY (MEAN ± STANDARD DEVIATION, %) OF COMPARISON MODELS IN INDUCTIVE PHASE

model when it has poor performance in some cases. How-
ever, overall, DE-SSC+M2 with KNN has the highest
accuracy in transductive phase, and both DE-SSC+M2
with KNN and DE-SSC+M3 have the highest accuracy
in inductive phase.

4) It is well known that the base classifiers play an important
role in self-labeled SSC models. For instance, the gen-
eralization ability of self-labeled SSC models depends
chiefly on the performances of their base classifiers. Ac-
cording to Tables IV–VII, both M1 and M2 obtain the
different accuracies with different base classifiers as ex-
pected, including original models and modified models.
In addition, the base classifier KNN achieves the better
performances than the base classifier SVM. Furthermore,
M4 outperforms than M2 and M2 outperforms than M1
under the condition of the same SVM base classifier. On
the other hand, M2 also outperforms than M1 under the

condition of the same KNN base classifier. However, we
can find that all original models have been improved by
applying the DE-SSC framework, despite what kind of
base classifiers they use.

Therefore, we conclude that the DE-SSC framework is effec-
tive for any self-labeled SSC model to alleviate the weaknesses
caused by unlabeled data during the iterative self-labeling pro-
cess and then achieve a stronger generalized ability.

D. Impacts of Labeled Ratio

This part will analyze the behaviors of the DE-SSC frame-
work with the different labeled ratio. We choose D16 and D25
to test the impacts of the labeled ratio because they have covered
the common problems of low dimension and high dimension.
The ten-fold cross-validation strategy is also used to determine
the final performances. In order to save space, we have put the



WU et al.: A HIGHLY ACCURATE FRAMEWORK FOR SELF-LABELED 917

TABLE VI
RESULTS OF WILCOXON SIGNED-RANKS TEST IN TRANSDUCTIVE PHASE

WITH A SIGNIFICANCE LEVEL α = 0.1

Comparison Mean of accuracy Standard deviation of
accuracy

R+ R− p-value R+ R− p-value

DE-
SSC+M1(KNN)
versus M1(KNN)

778 212 0.0005 711 279 0.0060

DE-
SSC+M1(SVM)
versus M1(SVM)

192 39 0.0041 157 74 0.0771

DE-
SSC+M2(KNN)
versus M2(KNN)

846 144 0.0000 658 332 0.0290

DE-
SSC+M2(SVM)
versus M2 (SVM)

415 326 0.2617 258 522 0.9668

DE-SSC+M3
versus M3

701 334 0.0194 558 477 0.3258

DE-SSC+M4
versus M4

665 370 0.0485 176 859 0.9999

DE-SSC+M5
versus M5

608 382 0.0946 512 478 0.4237

TABLE VII
RESULTS OF WILCOXON SIGNED-RANKS TEST IN INDUCTIVE PHASE WITH A

SIGNIFICANCE LEVEL α = 0.1

Comparison Mean of accuracy Standard deviation of
accuracy

R+ R− p-value R+ R− p-value

DE-
SSC+M1(KNN)
versus M1(KNN)

685 261 0.0053 652 294 0.0156

DE-
SSC+M1(SVM)
versus M1(SVM)

164 46 0.0145 131 100 0.3011

DE-
SSC+M2(KNN)
versus M2(KNN)

746 200 0.0005 652 294 0.0156

DE-
SSC+M2(SVM)
versus M2 (SVM)

475.5 265.5 0.0648 225 516 0.9829

DE-SSC+M3
versus M3

677 358 0.0363 616 419 0.1343

DE-SSC+M4
versus M4

940 95 0.0000 905 130 0.0000

DE-SSC+M5
versus M5

617 418 0.1295 544 491 0.3803

complete results in the Supplementary File1. In the following
discussions, we will cite the supplementary figures from that
file.

Figs. S1–S4 in the Supplementary File (see footnote 1) graph-
ically show the results when we increase the initial labeled ratio
from 10% to 90%. Note that some of the results are picked as an
example to present in Fig. 2. Since more labeled data are used to
train the classifier with the increase of the initial labeled ratio,
the accuracies of both original and modified models overall in-

1See https://pan.baidu.com/s/1hrK0BQk.

Fig. 2. Results with different initial labeled ratio in inductive phase:
(a) D16, (b) D25.

crease as expected. For dataset D16, we find that the accuracies
unexpectedly drop with the increase of the labeled ratio when
it is larger than 0.4. This may be explained by the reason that
the redundant labeled data actually increase the probability of
overfitting when the labeled ratio is larger than 0.4. As presented
in Section III-B, we know that the DE-POAC algorithm is su-
pervised by the labeled data. When the redundant labeled data
are used to train in the DE-SSC framework, the probability of
over fitting will be further increased after the applications of the
DE-POAC algorithm.

In addition, there are several cases that the DE-SSC has not
improved the performances of original models. Similarly, the
reason may be that the random selection process in the real-
ization of algorithm or that the initial labeled data can already
represent the whole data space. Thanks to the increase of ini-
tial labeled ratio, the appearances of unlabeled data with false-
positive label-predictions will occur less frequently. Therefore,
the improvements of accuracy achieved by DE-SSC decrease
with the increase of the labeled ratio.

In summary, we conclude that the DE-SSC framework has a
better performance in the situation of low labeled ratio, which
is a common phenomenon in SSC problems.

E. Impacts of Iteration Number and
Computational Efficiency

First, we will evaluate the impacts of different maximum
subsequent generations G of the DE-POAC algorithm when
the initial labeled ratio is 10%. D16 and D25, and the ten-
fold cross-validation strategy are also adopted to carry out the
experiments. Similarly, the complete results are presented in
Figs. S5–S8 in the Supplementary File (see footnote 1) and
some of the results are picked as an example to present in
Fig. 3. From these figures, we find that the DE-SSC framework
shows unstable performances during the initial steps, whilst it
predictably shows a robust performance in general in the next
steps. In summary, the DE-SSC framework performs well with a
relative small iteration number, which means that it can achieve
a good performance with the low-cost computing. Similarly,
we attribute the exceptions for the reason that random selection
process or the labeled data is sufficient for training.

Furthermore, in order to illustrate the computational com-
plexity of the DE-SSC framework, we have compared the
central processing unit (CPU) running time between the original
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Fig. 3. Results with different iteration number in inductive phase:
(a) D16, (b) D25.

Fig. 4. Results of the running time between the original models and
the modified models on two datasets: (a) D16, (b) D25.

models and their modified versions on datasets D16 and D25.
Each model is only executed once under the conditions of max-
imum subsequent generations G is 100 and initial labeled ratio
is 10%. The corresponding results are depicted in Fig. 4. Unsur-
prisingly, each modified model takes more CPU running time
than its corresponding original model in most cases because the
modified models have extra computing burden of DE-POAC
algorithm. However, it is noted that the modified model surpris-
ingly reduces the CPU running time in the case of M5 on dataset
D16, which means that the DE-SSC framework can accelerate
convergence for M5 in some cases. In addition, we still find
that the increase of CPU running time caused by the DE-POAC
algorithm is relatively small except for the case of M1. This ex-
ception may be explained by the principle of M1. Original M1
simply selects the unlabeled data which are nearest to labeled
data to label, while modified M1 adds the extra DE-POAC al-
gorithm into each iterative self-labeling process, resulting in the
much time cost. In summary, Fig. 4 shows that modified models
have comparable CPU running time to the original models.

In fact, the core of the DE-SSC framework is the DE-POAC
algorithm. Regarding to formula (8), the classifier C and the
maximum subsequent generations G are the critical factors in
deciding the computational efficiency of the DE-POAC algo-
rithm. Consequently, we suppose that the DE-SSC framework
will also perform well in computational efficiency and detection
ability of final solutions by selecting the appropriate classifier C
and maximum subsequent generations G. Obviously, the results
shown in Figs. S5–S8 in the Supplementary File (see footnote
1) and Fig. 4 confirm this supposition. Therefore, we can say
that the DE-SSC framework can find a right balance between
computational efficiency and detection ability of final solutions.

V. CONCLUSION

Summary: In this paper, DE-SSC is proposed as a framework
for any self-labeled SSC model to achieve a stronger general-
ized ability. The DE-SSC framework employs DE-POAC al-
gorithm to alleviate the weaknesses caused by unlabeled data
during the iterative self-labeling process of self-labeled SSC
models. Specifically, five representative self-labeled SSC mod-
els with different characteristics are modified to evaluate the
performance of the proposed DE-SSC framework. A series of
experiments on 45 benchmark datasets are conducted to check
the efficiency of the DE-SSC framework in improving the clas-
sification accuracy of self-labeled SSC models. Experimental
results clearly reflect that the DE-SSC framework is a suitable
tool for a self-labeled SSC model to control the unlabeled data
to achieve higher classification accuracy. Moreover, some other
issues of DE-SSC framework, such as impacts of the labeled ra-
tio, impacts of iteration number, and computational efficiency,
are also analyzed on two representative datasets. According to
the experimental results, we conclude that the DE-SSC frame-
work can perform well on the conditions of low labeled ratio
as well as relative small iteration number, which is favorable to
practical application in industry.

Possible extensions: Although the proposed DE-SSC frame-
work has shown the promising prospect, there are several open
issues to be considered. In the future, we plan to research a tech-
nology to automatically determine the value of iteration number
for DE-POAC, rather than a fixed value. Subsequently, the im-
proved DE-SSC framework will be developed and applied in
recommender systems [51]–[53].
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