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Abstract—Neighborhood regularization is highly important for a latent factor (LF)-basedQuality-of-Service (QoS)-predictor since similar

users usually experience similar QoSwhen invoking similar services. Current neighborhood-regularized LFmodels rely prior information

on neighborhood obtained from common rawQoS data or geographical information. The former suffers from low prediction accuracy

due to the difficulty of constructing the neighborhood based on incompleteQoS data, while the latter requires additional geographical

information that is usually difficult to collect considering information security, identity privacy, and commercial interests in real-world

scenarios. To address the above issues, this work proposes a posterior-neighborhood-regularized LF (PLF)model for QoS prediction.

Themain idea is to decompose the LF analysis process into three phases: a) primal LF extraction, where the LFs are extracted to

represent involved users/services based on knownQoS data, b) posterior-neighborhood construction, where the neighborhood of each

user/service is achieved based on similarities between their primal LF vectors, and c) posterior-neighborhood-regularized LF analysis,

where the objective function is regularized by both the posterior-neighborhood of users/services andL2-normof desired LFs. Experimental

results from large scaleQoS datasets demonstrate that PLF outperforms state-of-the-art models in terms of both accuracy and efficiency.

Index Terms—Web service, quality-of-service, latent factor analysis, posterior-neighborhood, regularization, cloud computing, big data

Ç

1 INTRODUCTION

WEB Services are the fundamental components for cloud
computing-based software applications [1]. They are

designed for easy exchange of data among software applica-
tions over the World Wide Web [2], [3], [4]. In the era of big
data and cloud computing, many service providers deploy
web services to serve their customers, which explosively
increases the number of onlineweb services [2], [3], [5]. Under

such circumstances, it is a challenge for potential users to
select appropriate web services, especially when many avail-
able candidate web services have highly similar or even
equivalent functionality [6], [7], [8].

Quality-of-Service (QoS), which measures the nonfunc-
tional characteristics of web services, e.g., response time and
throughput, plays an important role in service discovery and
selection [2], [3], [8], [9]. If the QoS data of candidate web
services are available, web services that fulfill potential
users’ QoS requirements can be selected and recommended.
Warming-up tests, which directly invoke web services, are
frequently performed to retrieve QoS data [10], [11]. How-
ever, the number of candidate services is usually very large
in real-world applications. Besides, most web service invoca-
tions are charged. Hence, it is very time-consuming, expen-
sive and thus impractical to inspect all the candidate web
services for retrievingQoS data [6], [12], [13].

Alternatively, QoS prediction is another widely used
way to acquire QoS data without such deficiency [10], [12],
[13], [14], [15], [16]. A QoS predictor aims at accurately pre-
dicting unknown QoS data based on historical web service
invocations. Collaborative filtering (CF), as a very successful
technique for implementing recommender systems in
e-commerce [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], has been employed to implement the QoS
predictors in recent years [10], [11], [12], [13], [14], [15], [29],
[30], [31], [32], [33], [34]. A CF-based QoS predictor makes
predictions based on a user-service QoS matrix [10], [11],
[12], [13], [14], [15], [29], [30], [31], [32], [33], [35], [36], where
each column denotes a web service, each row denotes a user,
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and each entry denotes the QoS record of a user’s innovation
on a service. This user-service matrix is very sparse because
a user usually experiences only a very small subset of all the
available services in real-world scenarios. Thus, the major
problem of CF-basedQoS prediction is how tomake accurate
predictions based on a very sparse user-service QoSmatrix.

Among various CF-based QoS predictors [12], [13], [37],
latent factor (LF)-based QoS predictors are the most popular
due to their high scalability and prediction accuracy [11], [14],
[15], [16], [29], [30], [31], [33], [38]. Neighborhood regulariza-
tion plays a key role in an LF-based QoS predictor because
similar users usually experience similar QoS when invoking
similar services [11], [14], [15], [33]. Current neighborhood-
regularized LF-based QoS predictorsmostly employ the com-
mon set defined on the raw partial QoS matrix or additional
geographical information to identify users’/services’ neigh-
bors. They rely on prior neighborhood that is identified before
the LF analysis process and suffer from the following major
limitations:

� It is difficult to accurately identify users’/services’
neighbors based merely on the common set defined
on the extremely sparse raw user-matrix matrix. The
major reason is that the common sets of users/serv-
ices are often too small tomodel user/service similari-
ties precisely. For example, Fig. 1 shows that many
known data (red entries) are not taken into account in
the search of the common set amongusers. As a result,
a lot of useful information is not properly utilized,
which lowers the accuracy of the identified user’s/
service’s neighbors. As shown in Fig. 1, although
target user u, user a, and user b are similar, user b is
also considered as a dissimilar user to target user u
because they have no commonQoS records.

� It is often difficult to retrieve the required geographi-
cal information due to the issues of identity privacy,
information security, and commercial interest. More-
over, geographical similarities can be influenced by
unexpected factors such as information facilities,
routing policies, network throughput, and time of
invocation.

To overcome the above limitations, this paper proposes a
posterior-neighborhood-regularized latent factor (PLF) model
for QoS prediction, which neighborhood accurately for
regularization solely and fully based on the user-service
matrix. The main idea of PLF is to decompose the LF analy-
sis process into three phases: a) primal LF extraction, where
the LFs are extracted based on an objective function without
any regularization for precisely fitting the given data; b)
posterior-neighborhood construction, where the involved

users’/services’ neighborhood is identified based on the
similarity between their primal LF vectors; and c) posterior-
neighborhood-regularized LF analysis, where the objective
function is regularized by both the posterior-neighborhood
and l2-norm of desired LFs. The main contributions of this
paper include:

� A posterior-neighborhood-regularized latent factor
(PLF) model with excellent abilities in achieving
highly accurate QoS prediction;

� A suite of theoretical analyses and algorithms design
of PLF;

� Extensive experiments on a widely-used real-world
QoS dataset regarding the QoS prediction compari-
sons between PLF and related state-of-the-art models.

To the best of our knowledge, PLF significantly advances
QoS prediction in accuracy for web services. Besides, PLF
differs from state-of-the-art models in two major ways. First,
PLF is capable of constructing neighborhood accurately based
on the full information in the user-servicematrix, whichmakes
PLF achieve highly accurate QoS predictions. Second, PLF
relies solely on the user-service matrix and does not require
any additional information, which makes PLF easy to use and
generally applicable to various recommendation scenarios.

The rest of this paper is organized as follows. Section 2
states the preliminaries. Section 3 presents the theories and
algorithms that facilitate the PLF model. Section 4 provides
and discusses the experimental results. Section 5 analyzes
the related work. Finally, Section 6 gives conclusions and
future works.

2 PRELIMINARIES

2.1 Notations

Table 1 summarizes the annotations used in this paper.

2.2 Latent Factor Analysis-Based QoS Prediction

An LF-based QoS predictor takes a user-service matrix R as
the input [15], [17], [18]. Since a user u from U usually
invokes a very small subset of the services in S, R is very
sparse with jRK j << jRU j. According to prior researches
[10], [11], [15], [17], [18], [38], [39], an LF-based QoS predic-
tor is defined as:

Definition. Given U; S; R; RK and f, an LF-based QoS predic-
tor extracts an LF matrix P to represent U and another LF
matrix Q to represent S based on RK to achieve R’s rank-f
approximation R̂. P andQ are extracted byminimizing an objec-
tive function defined on RK while fulfilling the condition of
f << minðjU j; jSjÞ. R̂ can be obtained by R̂ ¼ PQ.

To accurately represent RK with P and Q, an appropriate
objective function measuring the difference between R and R̂
is highly important [10], [11], [15], [17], [18], [38]. A Euclidean
distance-based objective is a common choice [15], [17], [18]:

argmin
P;Q

" P;Qð Þ ¼ 1

2

X
ðu;sÞ2RK

ru;s �
Xf
n¼1

pu;nqs;n

 !2

: (1)

Note that (1) is ill-posed [17], [38]. To address this issue,
l2-norm regularization is employed to enhance the generality
of a resultant LFmodel:

Fig. 1. Dilemma in building reliable neighborhood based on common
sets defined on raw QoS data.
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argmin
P;Q

" P;Qð Þ

¼ 1

2

X
ðu;sÞ2RK

ru;s �
Xf
n¼1

pu;nqs;n

 !2

þ �

2

X
ðu;sÞ2RK

Xf
n¼1

p2u;n þ
Xf
n¼1

q2s;n

 !
:

(2)

With an optimization algorithm, such as stochastic gradi-
ent descent (SGD),P andQ can be extracted from (2).

3 POSTERIOR-NEIGHBORHOOD-REGULARIZED

LATENT FACTOR MODEL

As analyzed in prior studies [11], [14], [15], [33], the predic-
tion accuracy of an LF-based QoS predictor can be further
improved by regularizing an objective function like (2) with
users’/services’ neighborhood information. However, cur-
rent models rely on the prior neighborhood that is built
before the LF analysis to achieve the regularization. Such

regularization may be not always useful to improve the pre-
diction accuracy because the prior neighborhood directly
identified on the raw partial QoS matrix are not reliable. To
address this issue, we propose the PLFmodel, which adopts a
posterior approach to identify users’/services’ neighborhood.

Fig. 2 shows the flowchart of a PLF model that consists of
three phases. Phase 1 is the primal LF extraction. By training
an LF model without any regularization, P and Q are
extracted from the full known entries in R for users and serv-
ices respectively. Phase 2 is the posterior neighbor identifica-
tion for target users/services. Specifically, each target user’s
similar users are identified from P and each target service’s
similar services are identified fromQ. Phase 3 is the posterior-
neighborhood-regularized LF analysis for predicting the
missingQoS data inR, where the objective function is regular-
ized by both the posterior-neighborhood and l2-norm of the
desired LFs. In this section, we discuss and analyze the three
phases in detail.

3.1 Primal LF Extraction

In this phase, the aim is to precisely extract primal LF matri-
ces P and Q for users and services respectively, which
means that the LF model should be trained without regular-
ization to accurately fit RK . To do so, we apply SGD to (1).
By considering the instant loss on a single instance ru;s, we
have

"u;s ¼ 1

2
ru;s �

Xf
n¼1

pu;nqs;n

 !2

: (3)

With SGD, the LFs involved in (3) are trained by moving
them along the opposite of the stochastic gradient of (3)
with respect to each single LF, i.e., we make

On ru;s; forn ¼ 1 � f :
pu;n  pu;n þ hqs;n ru;s �

Pf
n¼1 pu;nqs;n

� �
;

qs;n  qs;n þ hpu;n ru;s �
Pf

n¼1 pu;nqs;n
� �

:

8<
:

(4)

TABLE 1
Symbol Annotations

Symbol Explanation

U Target user set.
S Target web service set.
R Target user-service matrix with jU j rows and jSj columns.
ru;s R’s element at uth row and sth columndenoting theQoS

record experienced byuser u 2 U experience on service s 2 S.
RK Known entry set of R.
RU Unknown entry set of R.
f The number of dimensions in the LF space.
P jU j�f LF matrix for U.
P 0jU j�f LF matrix for U.
pu uth row-vector of P.
p0u uth row-vector of P’.
�pu Mean of LFs in pu.
Qf�jSj LF matrix for S.
Q0f�jSj LF matrix for S.
qs sth column-vector of Q.
q0s sth column-vector of Q0.
�qs Mean of LFs in qs.
R̂ R’s rank-f approximation built on RK with

f << minðjU j; jSjÞ.
r̂u;s R̂0s element at uth row and sth column denoting prediction

for ru;s.
� Regualrization coefficient for l2-norm-based regularization.
"ðP; QÞ Objective function with respect to P and Q.
"u;s Instant loss on ru;s.
Nmtr Max-training-round count for an LF model.
h Learning rate.
PCCuðu; kÞ Pearson correlation coefficient (PCC) [16] between users u

and k.
PCCsðs; jÞ PCC between services s and j.
K1 The number of the K1-nearest-neighbors for a user.
NK1ðuÞ K1-nearest-neighbor set for user u.
TuðuÞ Regularization neighbor set for user u.
K2 The number of the K2-nearest-neighbors for a service.
NK2ðsÞ K2-nearest-neighbor set for service s.
TsðsÞ Regularization neighbor set for service s.
Suu;k Normalized similarity weight between users u and k.
Sss;j Normalized similarity weight between services s and j.
a1 Regularization coefficient for posterior-neighborhood-based

regularization on users.
a2 Regularization coefficient for posterior-neighborhood-based

regularization on services.
G Testing set.
G A synthetic dataset
gu;s G’s element at uth row and sth column.
j � j The cardinality of an enclosed set.
j � jabs The absolute value of an enclosed number.

Fig. 2. Flowchart of the proposed PLF model.
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After all the ru;s in RK are used to train with (4), we can
extract the primal LFs, which can be utilized to identify the
posterior-neighbors of the target users/services in Phase 2.

3.2 Posterior-Neighborhood Construction

With the primal LF matrices P andQ extracted in Phase 1, we
can obtain the feature vectors for eachuser/service. Those fea-
ture vectors are dense. In addition, by accurately fitting RK , P
and Q well represent the information hidden in R. Thus,
we can precisely identify target users’/services’ posterior-
neighbors based on P andQ. For example, as shown in Fig. 3,
through the primal LF extraction, we obtain the dense LF
matrix P which includes the feature vectors for target user u,
user a, and user b. Base on P, we can identify users a and b as
target user u’s similar users. This addresses the limitation
shown in Fig. 1 where user b cannot be identified as target
user u’s similar user because they have no common set.

As indicated by prior researches [11], [14], [15], [40], PCC
is a reliable similarity metric. Hence, we choose it in this
research as the similarity metric for posterior-neighbor iden-
tification. For two users u and k, we compute their similarity
PCCuðu; kÞ as follow

PCCu u; kð Þ
u2U;k2U;u6¼k

¼
Pf

n¼1 pu;n � �pu
� �

pk;n � �pk
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPf
n¼1 pu;n � �pu
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPf

n¼1 pk;n � �pk
� �2q ;

(5)
where �pu and �pk are respectively given by

�pu ¼ 1

f

Xf
n¼1

pu;n; �pk ¼ 1

f

Xf
n¼1

pk;n: (6)

Note that PCCuðu; kÞ lies in the interval of [-1,1], where a
large value denotes a high similarity between the corre-
sponding pair of users. Based on user similarity given by
(5), the K1-nearest-neighbor set for each user can be identi-
fied. Then, we can obtain the regularization neighbor set for
each user by

TuðuÞ ¼ k k 2 NK1
ðuÞ; PCCuðu; kÞ > 0; k 6¼ u

��� 	
: (7)

Note that the neighborhood relationship described by (7)
is asymmetric.

Similarly, given two services s and j, we compute their
similarity PCCsðs; jÞwith

PCCs s; jð Þs2S;j2S;s6¼j ¼
Pf

n¼1 qs;n � �qs
� �

qj;n � �qj
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPf
n¼1 qs;n � �qs
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPf

n¼1 qj;n � �qj
� �2q ;

�qs ¼
1

f

Xf
n¼1

qs;n; �qj ¼
1

f

Xf
n¼1

qj;n:

(8)

With the service similarity given by (8), we can obtain the
regularization neighbor set for each service by

TsðsÞ ¼ j j 2 NK2
ðsÞ; PCCsðs; jÞ > 0; j 6¼ s

��� 	
: (9)

Given that the known data of a target QoS matrix are reli-
able (i.e., they are true user-service invocation records), an
LF analysis-based model can assure that its resultant LFs
well represent the highly valuable information hidden in
them. From this point of view, we see the reason why we
choose to perform LF analysis on a sparse QoS matrix as a
pre-step before the neighborhood detection. Naturally, we
can achieve neighborhood based on a sparse QoS matrix
directly by computing PCC among its row/column entities,
i.e., the involved users/services. However, the quality of the
resultant neighborhood can be greatly impaired by the target
matrix’s sparsity. In comparison, a PLF model first extracts
compact and dense LF matrices from the sparse QoS matrix,
where each involved user/service is described by a dense LF
vector. Moreover, such an LF vector is acquired on premise
of well representing observed interactions in the target sys-
tem. Thus, the neighborhood built on the LF matrices is
expected to be far more reliable on one built on the original
sparse QoSmatrix.

3.3 Posterior-Neighborhood-Regularized
LF Analysis

In this phase, we adopt the posterior-neighbors identified in
phase 2 to help to extract two new LF matrices P 0 and Q0.
Considering similar users tend to experience similar QoS on
similar services [11], [14], [15], we design the following loss
function:

argmin
P 0;Q0

" P 0; Q0ð Þ

¼
XUj j
u¼1

X
k2TuðuÞ

Suu;k

Xf
n¼1

p0u;n � p0k;n
� �20

@
1
A

þ
XSj j
s¼1

X
j2TsðsÞ

Sss;j
Xf
n¼1

q0s;n � q0j;n
� �20

@
1
A;

(10)

where Suu;k and Sss;j model the linear weight of user u’s kth
neighbor and service s’s jth neighbor respectively based on
the corresponding posterior similarities. To neutralize the
impact of magnitudes, Suu;k and Sss;j are given by

Suu;k ¼ PCCuðu; kÞP
k02TuðuÞ PCCuðu; k0Þ ; Sss;j ¼

PCCsðs; jÞP
j02TsðsÞ PCCsðs; j0Þ :

(11)

From (10) and (11), we can see that a user’s/service’s
most similar neighbor has the highest impact on the gener-
alized loss. Moreover, with (10) we attempt to minimize the
difference between LFs from the most similar neighbors,
thereby keeping them similar as reflected in the posterior-
neighborhood.

By integrating (10) into (2), we obtain the posterior-
neighborhood-regularized objective function

Fig. 3. An example of posterior-neighborhood construction.
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" P 0; Q0ð Þ ¼ 1

2

X
ðu;sÞ2RK

ru;s �
Xf
n¼1

p0u;nq
0
s;n

 !2

þ �

2

X
ðu;sÞ2Rk

Xf
n¼1

p0u;n
� �2

þ
Xf
n¼1

q0s;n
� �2 !

þ a1

2

XUj j
u¼1

X
k2TuðuÞ

Suu;k

Xf
n¼1

p0u;n � p0k;n
� �20

@
1
A

þ a2

2

XSj j
s¼1

X
j2TsðsÞ

Sss;j
Xf
n¼1

q0s;n � q0j;n
� �20

@
1
A;

(12)

where the instant loss on a single instance ru;s is

"u;s ¼ 1

2
ru;s �

Xf
n¼1

p0u;nq
0
s;n

 !2

þ �

2

Xf
n¼1

p0u;n
� �2

þ
Xf
n¼1

q0s;n
� �2 !

þ a1

2

X
k2TuðuÞ

Suu;k

Xf
n¼1

p0u;n � p0k;n
� �2

þ a2

2

X
j2TsðsÞ

Sss;j
Xf
n¼1

q0s;n � q0j;n
� �2

:

(13)

To train the involved LFs, we apply SGD to (13)

On ru;s; forn ¼ 1 � f :
p0u;n  p0u;n � h

@"u;s
@p0u;n

q0s;n  q0s;n � h
@"u;s
@q0s;n

8<
: : (14)

Note that after phases 1 and 2, Suu;k and Sss;j are already
known, they should be treated as constant in (14). Hence,
we obtain the following training rules for a PLF model

On ru;s; forn ¼ 1 � f :

p0u;n  p0u;n þ hq0s;n ru;s � p0u;nq
0
s;n

� �
�h�p0u;n � ha1

P
k2TuðuÞ Suu;k p0u;n � p0k;n

� �
;

q0s;n  q0s;n þ hp0u;n ru;s � p0u;nq
0
s;n

� �
�h�q0s;n � ha2

P
j2TsðsÞ Sss;j q0s;n � q0j;n

� �
:

8>>>>>><
>>>>>>:

(15)

3.4 Algorithm Design and Analysis

In our design, a PLFmodel relies on two algorithms, i.e., Pos-
terior-Neighborhood Construction (PNC), and Posterior-
neighborhood-regularized Latent Factor Analysis (PLFA).
Algorithm PNC constructs the posterior-neighborhood that
is adopted by Algorithm PLFA. Algorithm PLFA calls Algo-
rithm PNC to minimize (12) for predicting the missing QoS
data. Their pseudocode and the time cost are given in Algo-
rithm PNC andAlgorithm PLFA, respectively. Next, we ana-
lyze their computational cost.

The computational complexity of Algorithm PNA is

C ¼ Qð1Þ þQð1Þ þNmtr � RKj j � f � 2�Qð1Þ þQð1Þð Þ þQð1Þ
þ jU j �Q fð Þ þ jU j � Uj j � 1ð Þ=2�Q fð Þ þ jU j �K1

þ jSj �Q fð Þ þ jSj � Sj j � 1ð Þ=2�Q fð Þ þ jSj �K2 þQ 1ð Þ
� Q Nmtr � RKj j � f þ jU j2 þ jSj2

� �
� f

� �
:

(16)

The computational complexity of Algorithm PLFA is

Algorithm PNC

Input: R
Output: PCCuðu; kÞ; TuðuÞ, PCCsðs; jÞ, TsðsÞ Cost
1 Initializing f; �; h; Nmtr Qð1Þ
2 while t � Nmtr && not converge �Nmtr

3 for each known entry ru;s inR== ru;s 2 RK � jRK j
4 for n ¼ 1 to f � f
5 computing pu;n according to formula (4) Qð1Þ
6 computing ps;n according to formula (4) Qð1Þ
7 end for –
8 end for –
9 t ¼ tþ 1 Qð1Þ
10 end while –
11 for u ¼ 1 to jU j � jU j
12 computing �pu according to formula (6) QðfÞ
13 end for –
14 for u ¼ 1 to jU j � jU j
15 for k ¼ uþ 1 to jU j � ðjU j � 1Þ=2
16 computing PCCuðu; kÞ according to formula (5) QðfÞ
17 end for –
18 end for –
19 for u ¼ 1 to jU j � jU j
20 computing TuðuÞ according to formula (7) K1

21 end for –
22 for s ¼ 1 to jSj � jSj
23 computing �qs according to formula (8) QðfÞ
24 end for –
25 for s ¼ 1 to jSj � jSj
26 for j ¼ sþ 1 to jSj � ðjSj � 1Þ=2
27 computing PCCsðs; jÞ according to formula (8) QðfÞ
28 end for –
29 end for –
30 for s ¼ 1 to jSj � jSj
31 computing TsðsÞ according to formula (9) K2

32 end for –
33 return: PCCuðu; kÞ; TuðuÞ; PCCsðs; jÞ; TsðsÞ Qð1Þ

C ¼ Q 1ð Þ þ jU j � Q K1ð Þ þ jU j �Q 1ð Þð Þ
þ jSj � Q K2ð Þð
þ jSj �Q 1ð ÞÞ þNmtr �Q jUj � f �K1ð
þ Sj j � f �K2 þ RKj j � f � 2Þ þQ 1ð Þ
� QðjUj2 þ jSj2 þNmtr � ð RKj j þ jU j �K1

þ Sj �K2Þ � fÞ:j

(17)

In real-world scenarios, there are only a limited number
of users or services that are similar to the target user or ser-
vice in their QoS experiences on co-invoked services. As a
result, K1 and K2 are much smaller than jU j and jSj for a
PLF model. Thus, the overall computational complexity of
Algorithm PLFA is

C � Q jU j2 þ jSj2 þNmtr � RKj j � f
� �

: (18)

Finally, the total computational complexity of building a
PLF model is

7
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C � Q Nmtr � RKj j � f þ jUj2 þ jSj2
� �

� f
� �
þQ jUj2 þ jSj2 þNmtr � RKj j � f

� �
� Q ðjU j2 þ jSj2Þ � f

� �
þQ Nmtr � RKj j � fð Þ:

(19)

In Section 4, we will theoretically and experimentally
demonstrate that the computational complexity of Algo-
rithm PLFA is comparable to the state-of-the-art LF-based
QoS predictors with neighborhood-regularization.

Algorithm PLFA

Input: R; PCCuðu; kÞ; TuðuÞ; PCCsðs; jÞ; TsðsÞ
Output: R̂ Cost
1 Calling Algorithm PNC Qð1Þ
2 Initializing f; �; h; Nmtr Qð1Þ
3 for u ¼ 1 to jUj � jUj
4 computing

P
k02TuðuÞ PCCuðu; k0Þ QðK1Þ

5 for k ¼ 1 to jUj � jUj
6 computing Suu;k according to formula (11) Qð1Þ
7 end for –
8 end for –
9 for s ¼ 1 to jSj � jSj
10 computing

P
j02TsðsÞ PCCsðs; j0Þ QðK2Þ

11 for s ¼ 1 to jSj � jSj
12 computing Sss;j according to formula (11) Qð1Þ
13 end for –
14 end for –
15 while t � Nmtr && not converge �Nmtr

16 for u ¼ 1 to jUj � jUj
17 for n ¼ 1 to f � f
18 computing ha1

P
k2TuðuÞ Suu;kðpu;n � pk;nÞ QðK1Þ

19 end for –
20 end for –
21 for s ¼ 1 to jSj � jSj
22 for n ¼ 1 to f � f
23 computing ha2

P
j2TsðsÞ Sus;jðqs;n � qj;nÞ. QðK1Þ

24 end for –
25 end for –
26 for each known entry ru;s in R == ru;s 2 RK � jRKj
27 for n ¼ 1 to f � f
28 computing pd0u;n according to formula (15) Qð1Þ
29 computing p0s;n according to formula (15) Qð1Þ
30 end for –
31 end for –
32 t ¼ tþ 1 Qð1Þ
33 end while –
34 return P; Q Qð1Þ

4 EXPERIMENTS AND RESULTS

4.1 Datasets

To evaluate the PLF model, we conduct extensive experi-
ments on a benchmark dataset named Response Time. It
contains real-world web service QoS data and has been com-
monly used in prior research on QoS prediction [2], [6], [10],
[11], [14], [15], [29], [30], [31], [33]. It records the response
times of 5,825 web services experienced by 339 users’
1,873,838 invocations. Different test cases are designed to
validate the performance of PLF. Table 2 summarizes the

properties of all the test cases, where the column “Density”
indicates the density of the training data. Each test case is
repeated 10 times and the results are averaged.

4.2 Evaluation Protocol

QoS prediction aims to predict the unknown QoS data
based on the known ones. Hence, this work mainly focuses
on the prediction accuracy, i.e., the closeness between the
prediction results and the actual values. In our experiments,
we employ the mean absolute error (MAE) and the root
mean squared error (RMSE), which are also widely used for
researching QoS prediction [11], [14], [15], [29], [30], [31],
[33], to evaluate the prediction accuracy of PLF:

MAE ¼
X
ðw;jÞ2G

rw;j � r̂w;j

��� ���
abs

0
@

1
A, Gj j; (20)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ðw;jÞ2G

rw;j � r̂w;j
� �20

@
1
A, Gj j

vuuut ; (21)

where a lower MAE or RMSE value denotes a higher predic-
tion accuracy. All the experiments are run with 3.7 GHz i7
central processing unit (CPU) and 64 GB random access
memory.

4.3 Impacts ofK1 andK2

First, we analyze the impacts ofK1 andK2 on the prediction
accuracy of PLF. In this set of experiments, the parameters
are set as a1 ¼ 0:2; a2 ¼ 0:2; f ¼ 20; � ¼ 0:01, and h ¼ 0:01,
uniformly. Figs. 4 and 5 shows the experimental results on
MAE and RMSE respectively when K1 increases from 0 to
50 andK2 from 0 to 100. From these figures, we have the fol-
lowing observations.

WhenK1 andK2 are both set as zero, PLF has the highest
MAE and RMSE in almost all the test cases because it is
equivalent to an LF model. This observation confirms that
the posterior-neighborhood-based regularization is useful
in improving the prediction accuracy for an LF model.

When K1 or K2 is set as zero, PLF has a relatively high
MAE and RMSE in all the test cases except for theMAE in one
situation where K2 is set as zero on D1. The reason for this
exception is that the density of D1 is low (5 percent) and the
number of web services (5,825) is much larger than that of the
users (339). In such a situation, more posterior-neighborhood
information is extracted from the users than the services. As a
result, the users’ posterior-neighborhood-based regulariza-
tion is more useful than the services’ in improving the predic-
tion accuracy of PLF.

As K1 and K2 increase, the MAE and RMSE of PLF
decrease at first and then increase in general. For example,

TABLE 2
Properties of All the Designed Test Cases

Dataset No. Density Training data Testing data

Response Time

D1 5% 93,692 1,780,146
D2 10% 187,384 1,686,454
D3 15% 281,076 1,592,762
D4 20% 374,768 1,499,070
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on D4, since more similar users/services are included in
PLF as K1 and K2 increase, the MAE decreases from 0.4589
to 0.4238 at first. However, when K1 and K2 become too
large, some dissimilar users/services are also introduced
into PLF and jeopardize its prediction accuracy.

As the density of the training data increases, PLF tends to
achieve the lowest MAE and RMSE on the smaller K1 and
K2. For example, on D1 (5 percent), PLF achieves the lowest
RMSE when K1 is in the range of 40—50 and K2 is in the
range of 50—100. On D4 (20 percent), the optimal ranges of
K1 and K2 for PLF decrease to 10—20 and 40—60 respec-
tively. The major reason is that more training data contains
more posterior-neighborhood information, which is benefi-
cial for PLF in finding highly similar users/services. In
other words, some dissimilar users/services, which were
included in the prediction model at the beginning, will be
discovered and discarded finally as the density of the train-
ing data increases. According to this observation, we set
K1 ¼ 15 and K2 ¼ 50 as the default setting in the next
experiments.

In conclusion, these observations verify that the posterior-
neighborhood-based regularization is significantly effective
in improving the prediction accuracy of PLF.

4.4 Impacts of a1 and a2

This set of experiments focuses on the impacts of a1 and a2

when their values increase from 0 to 1, as shown in Figs. 6
and 7. The other parameters are set as K1 ¼ 15; K2 ¼ 50;
f ¼ 20; � ¼ 0:01, and h ¼ 0:01, uniformly. As demonstrated,
the MAE and RMSE of PLF decrease as a1 and a2 increase at
the beginning. After reaching a certain threshold, as a1 and
a2 continue to increase, the MAE and RMSE of PLF increase.
The reason is that when a1 and a2 are too large, PLF will
heavily rely on the posterior-neighborhood-based regulariza-
tion, which leads to underfitting. In real-world applications,
the datasets generated from different domains differ from
each other vastly in user count, web service count, instance
count, and data density. The optimal a1 and a2 depend
heavily on such data characteristics. Hence, a1 and a2 are
domain-specific, they should be experimentally inspected
and set for PLF to achieve high prediction accuracy.

4.5 Impact of f

This set of experiments analyzes the impact of f with
K1 ¼ 15; K2 ¼ 50; a1 ¼ 0:1; a2 ¼ 0:4; � ¼ 0:01, and h ¼ 0:01.
Fig. 8 shows the experimental results with f increasing from
10, 20, 40, 80, 160 to 320. A higher-dimensional LF space

Fig. 4. MAE of PLF whenK1 increases from 0 to 50 andK2 increases from 0 to 100: (a) D1, (b) D2, (c) D3, (d) D4.

Fig. 5. RMSE of PLF whenK1 increases from 0 to 50 andK2 increases from 0 to 100: (a) D1, (b) D2, (c) D3, (d) D4.

Fig. 6. MAE of PLF when a1 and a2 increase from 0 to 1: (a) D1, (b) D2, (c) D3, (d) D4.
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usually provides PLF with better representation learning
ability [6], [17]. Fig. 8 shows that the MAE and RMSE of PLF
decrease as f increases in general in all the test cases. More-
over, it shows that the MAE and RMSE of PLF tend to
decrease slightly or even increase after f exceeds a certain
threshold. The reason is that when an appropriate value is
assigned to f, PLF obtains the highest representation learning
ability. An extra increase in f cannot bring significant
improvement in the prediction accuracy. Instead, it increases
the probability of overfitting which lowers prediction accu-
racy. Besides, the computational cost of PLF also increases
linearly with f. Hence, we set f ¼ 20 to balance the computa-
tional cost and the prediction accuracy in all the experiments.

4.6 Impact of �

In this set of experiments, we analyze the impact when �
increases. The other parameters are set asK1 ¼ 15; K2 ¼ 50;
a1 ¼ 0:1; a2 ¼ 0:4; f ¼ 20, and h ¼ 0:01, uniformly. The
results are shown in Fig. 9. Since the l2-norm regularization
can prevent PLF from overfitting, we find that the MAE and
RMSE of PLF decrease at first as � increases in all the test
cases. However, after � exceeds a certain point, the MAE and
RMSE of PLF increase. This indicates that PLF is largely
impacted by the l2-norm regularization. From the experimen-
tal results, we conclude that � is crucial for PLF to achieve

highly accurate prediction results. Since � is also dependent
on the data characteristics [38], its optimal value needs to be
experimentally inspected.

4.7 Comparisons Between PLF
and State-of-the-Art Models

Finally, we theoretically and experimentally compare PLF
with seven related state-of-the-art models in their prediction
accuracy and computational efficiency. These comparedmod-
els are three LF-based models (BMF, NIMF, and RSNMF),
three LF-basedmodels with additional geographical informa-
tion (NAMF, GeoMF, and LMF-PP), and one deep neural net-
work (DNN) based model (AutoRec). Note that NIMF,
NAMF, GeoMF, and LMF-PP are all prior-neighborhood-
based, while PLF is posterior-neighborhood-based. These
compared models have different characteristics as given in
Table 3. Besides, their computational complexity is concluded
in Table 4, where there are two major parts, one is for con-
structing the neighborhood regularization and the other one
is for minimizing the objective function. Since AutoRec’s
computational complexity is obviously much higher than its
peers due to its DNN structure [43], we do not summarize its
computational complexity in Table 4.

In prediction accuracy, the dimension of LF is set as
f ¼ 20 for all the models except for AutoRec—because it is

Fig. 9. MAE and RMSE of PLF as � increases: (a) D1, (b) D2, (c) D3, (d) D4.

Fig. 7. RMSE of PLF when a1 and a2 increase from 0 to 1: (a) D1, (b) D2, (c) D3, (d) D4.

Fig. 8. MAE and RMSE of PLF with different f: (a) D1, (b) D2, (c) D3, (d) D4.

800 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 2, MARCH/APRIL 2022

Authorized licensed use limited to: GUANGZHOU UNIVERSITY. Downloaded on May 07,2022 at 03:06:22 UTC from IEEE Xplore.  Restrictions apply. 



a deep neural networks based model—to facilitate fair com-
parisons. Besides, all other parameters involved in the com-
pared models are all set as instructed in their corresponding
papers. For PLF, the other parameters are set as K1 ¼ 15;
K2 ¼ 50; a1 ¼ 0:1; a2 ¼ 0:4, and h ¼ 0:01. Fig. 10 records
the compared results. It shows that PLF achieves the lowest
MAE in all the test cases, which are 4.8—6.62 percent,
2.62—4.69 percent, 0.66—3.57 percent, 3—6.03 percent,
1.15—3.8 percent, 0.78—1.83 percent, and 4.08—7.5 percent
lower than that achieved by BMF, NIMF, RSNMF, NAMF,
GeoMF, LMF-PP, AutoRec respectively. In RMSE, PLF and
GeoMF perform better than the other models in all the test
cases. Furthermore, the RMSE achieved by PLF is slightly
worse than GeoMF on D1 and D2.

To validate whether PLF achieves significantly higher
prediction accuracy than the other models, the Wilcoxon
signed-ranks test [44], which is a nonparametric pairwise
comparison procedure, is applied to perform the statistical
analysis. Table 5 records the statistical results, where three
columns respectively show the achieved rankings Rþ and
R� values and its associated p-value. A larger Rþ value
indicates that PLF has better prediction accuracy. The
accepted hypotheses that PLF outperforms the other mod-
els with a significance level of 0.05 are highlighted in bold.
Table 5 clearly validates that PLF has significantly higher
prediction accuracy than the other models except for
GeoMF. However, we can see that PLF also achieves much
higher Rþ rankings than GeoMF, which indicates that
PLF has slightly higher prediction accuracy than GeoMF.
More importantly, PLF does so without the need for
the additional geographical information that is required
by GeoMF.

Considering the computational efficiency of involved
models, we summarize their CPU running time in all testing
cases in Fig. 11. From Fig. 11 and Table 4, we have several
observations:

a) BMF and RSNMF have no computational cost in con-
structing neighborhood regularization because they
do not consider neighborhood regularization,making
them consume less time than their peers do. How-
ever, they are generally outperformed by their peers
in prediction accuracy for missing data.

b) PLF’s computational efficiency is higher than that of
GeoMF and LMF-PP because of f < < minfjU j; jSjg.

c) For minimizing the objective function, NIMF and
GeoMF are slower than the other models. In other

Fig. 10. The compared results on all the test cases: (a) MAE, (b) RMSE.

TABLE 5
Statistical Results of Prediction Accuracy by Conducting

Wilcoxon Signed-Ranks Test With A Significance Level of 0.05

Comparison Rþ R- p-value

PLF vs. BMF 36 0 0.0039
PLF vs. NIMF 36 0 0.0039
PLF vs. RSNMF 36 0 0.0039
PLF vs. NAMF 36 0 0.0039
PLF vs. GeoMF 27 9 0.1250
PLF vs. LMF-PP 36 0 0.0039
PLF vs. AutoRec 36 0 0.0039

TABLE 3
Descriptions of All the Compared Models

Models Descriptions

BMF
The basic matrix factorization (MF) model [38] which consists

of two situations, i.e., with and without linear biases. We pick

the best one for comparisons on each test case.

NIMF
The neighborhood-integrated MF model [16] extends BMF by

employing the information of similar users.

RSNMF
The regularized single element dependent non-negative MF

model [6] is designed for QoS prediction by incorporating
regularization into a non-negative MF.

NAMF
The network-awareMFmodel [15] employs the additional

network distances information to construct the neighborhood.

GeoMF
The improved MF model [14] employs the additional

geographical relationships to construct the neighborhood.

LMF-PP
The location-based MF model [11] employs the additional

location information to construct the neighborhood.

AutoRec
The deep neural networks based model [41] employs an

autoencoder [42] framework for CF and consists of I-AutoRec

and U-AutoRec. The best one is chosen to compare.

PLF
The neighborhood of latent-factor based MF model proposed

in this paper.

TABLE 4
The Computational Complexities of All the Models

Model Complexity of constructing
neighborhood regularization

Complexity of minimizing
objective function

BMF [38] / QðNmtr � jRK j � fÞ
NIMF [16] QðjUj2 � jSjÞ QðNmtr � jRK j � f �K2

1 Þ
RSNMF [6] / QðNmtr � jRK j � fÞ
NAMF [15] QðjUj2Þ QðNmtr � jRK j � fÞ
GeoMF [14] QðjUj2 � jSj þ jSj2 � jUjÞ QðNmtr � jRK j � f 2 � ðK1 þK2ÞÞ
LMF-PP [11] QðjUj2 � jSj þ jSj2 � jUjÞ QðNmtr � jRK j � fÞ
PLF QððjU j2 þ jSj2Þ � fÞ QðNmtr � jRK j � fÞ

Fig. 11. The compared results of CPU running time on all the test cases.
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words, the PLF, BMF, RSNMF, NAMF and LMF-PP
models have the lowest computational complexity.

d) AutoRec has the most CPU running time among all
the models due to its DNN-based structure.

e) PLF’s computational efficiency is comparable to that
of NIMF, NAMF, GeoMF, and LMF-PP.

Based on the experimental results and the analyses in
this section, we conclude that PLF has better performance
than the seven state-of-the-art models because a) it has the
best prediction accuracy, and b) when comparing with
NAMF, GeoMF, and LMF-PP, it has comparable computa-
tional complexity and does not require additional geo-
graphical information.

4.8 Performance on Large Scale Dataset

As analyzed in Section 4.7, PLF consumes more CPU run-
ning time than the ordinary LF-based QoS predictors with-
out neighborhood regularization (BMF and RSNMF). To
evaluate PLF’s performance on a large scale dataset, we gen-
erate a synthetic large scale dataset by introducing Gaussian
noise to the dataset Response Time. The specific method of
generating synthetic dataset is: a) for each known entry ru;s
in ResponseTimeRj339j�j5825j, generating the corresponding
synthetic entry gu;s by the formula gu;s ¼ ru;s þ ru;s � 0:05 �
randðÞ, where randðÞ indicates a random real number that
obeys the standard normal distribution, then we have a syn-
thetic dataset Gj339j�j5825j, b) repeating the step a for 50 times
to obtain 50 different datasets Gj339j�j5825j, and c) merging
the 50 different datasets by rows to form a large scale
dataset Gj16950j�j5825j. After that, the original Response Time is
expanded from 339 users to 16950 users, and the total num-
ber of invocations is increased from 1,873,838 to 93,691,900.
Then, different test cases as designed in Table 2 are also used
to validate PLF’s performance on the synthetic large scale
dataset, as shown in Table 6.

Then, we compare PLF with BMF and RSNMF (without
neighborhood regularization) on prediction accuracy and
computational efficiency. The parameters are set the same
as in Section 4.7. Tables 7 and 8 record the compared results.

From them, we observe that: a) PLF has better prediction
accuracy while consumes more CPU running time than
BMF and RSNMF, b) PLF consumes much less CPU running
time for constructing neighborhood regularization than for
minimizing the objective function, and c) all the models con-
sume less CPU running time as density increases, which
means that more training data can speed up their conver-
gence. These results validate that on the large scale dataset,
PLF performs well on prediction accuracy while its compu-
tational efficiency is not outstanding.

As analyzed in [45], [46], an LF-based model’s computa-
tional efficiency can be greatly improved by implementing
parallelization. Especially, for anLF-basedmodel, its different
users’/services’ LFs can be simultaneously trained by the
alternating stochastic gradient descent (ASGD) without
impacting prediction accuracy [46]. On this basis, we develop
PLF to a parallel version that can parallelminimizing its objec-
tive function (because PLF consumes most time to minimize
the objective function), please refer to [46] for details. Then,
we test PLF’s computational efficiency on DS1 as the core
number of CPU increases, the results are recorded in Fig. 12.
From it, we can see that PLF’s computational efficiency has
been improved as the core number of CPU increases. Spe-
cially, we find that the CPU running time with 8 cores
(1860.91) is less than BMF (2348.91 seconds), which means
that PLF has higher computational efficiency than BMFwhen
it employsmore than 8 cores to develop a parallel version.

Hence, based on the above analyses, we conclude that on
the large scale dataset, PLF not only performs well on pre-
diction accuracy but also has high computational efficiency
by implementing parallelization.

5 RELATED WORK

The proposed PLF is an LF-based model. An LF model orig-
inates from matrix factorization [6], [17], [47] and has been

TABLE 7
Compared Results on Prediction Accuracy

Test cases
RMSE MAE

BMF RSNMF PLF BMF RSNMF PLF

DS1 1.0715 1.0589 1.0085 0.4053 0.3849 0.3758
DS2 1.0181 0.9986 0.9804 0.3959 0.3611 0.3584
DS3 1.0018 0.9666 0.9498 0.3964 0.3524 0.3511
DS4 0.9948 0.9497 0.9458 0.3977 0.3494 0.3488

TABLE 8
Compared Results of CPU Running Time (sec)

Test cases BMF RSNMF PLF	

DS1 2348.91 11461.05 88.21þ9979.38
DS2 2301.39 2690.64 76.88þ9507.93
DS3 1205.52 2946.77 80.17þ6855.11
DS4 524.73 3341.05 75.16þ6328.33
	The first part before þ is for constructing neighborhood regularization and
the second part after þ is for minimizing objective function.

Fig. 12. PLF’s performance on DS1 as the core number of CPU
increases: (a) CPU running time, (b) Speedup.

TABLE 6
Properties of All the Designed Test Cases on the

Synthetic Large Scale Dataset

Dataset No. Density Training data Testing data

Synthetic large
scale dataset

DS1 5% 4,684,595 89,007,305
DS2 10% 9,369,190 84,322,710
DS3 15% 14,053,785 79,638,115
DS4 20% 18,738,380 74,953,520
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widely used to develop the QoS predictor due to high scal-
ability and prediction accuracy [16], [29], [30], [31], [33],
[38]. An LF-based QoS predictor is built on a low-rank
approximation to a user-service matrix based only on the
known entries in the matrix. It maps both users/services
into the same low-dimensional LF space, trains desired LFs
on the known entries in the user-service matrix, and then
predicts missing entries (i.e., QoS data) in the matrix heavily
based on resultant LFs [6], [17], [30], [38].

Since similar users usually experience similar QoS when
invoking similar services, neighborhood information can be
used to improve an LF-based QoS predictor’s prediction
accuracy. Zheng et al. first propose a neighborhood-
integrated LF-based QoS predictor based only on the user-
service matrix [16]. Next, they develop their model by inte-
grating the network map of users [15]. After that, Chen et al.
propose an LF-based QoS predictor that incorporates the
knowledge of geographical neighborhoods [14], Ryu et al.
propose an LF-based QoS predictor by using the location
information of users/service [11], and Feng and Huang pro-
pose a neighborhood enhanced LF-based QoS predictor by
systematically considering geographical information, sample
set diversity computation and platform context [33]. These
proposed QoS predictors have the common point that the
neighborhood information, which is incorporated into an LF
model as the regularization term, is defined on sparse QoS
data and/or geographical information.

In this study, PLF is significantly different from existing
QoS predictors. First, existing predictors without neighbor-
hood regularization [6], [17], [30], [38] commonly suffer low
prediction accuracy because they ignore relationships among
involved users/services. In comparison, PLF models such
relationships via constructing the neighborhood among them
accurately based on the dense LF matrices well representing
the known data of a sparse QoS matrix. Second, existing pre-
dictors with neighborhood regularization [11], [14], [15], [33]
require additional geographical information to construct
users’/services’ neighborhood, while PLF relies solely on the
user-servicematrix anddoes not require any additional infor-
mation. It is expected to achieve even higher prediction accu-
racy for missing QoS data by combining heterogeneous
neighborhoods originated fromdifferent data source.

Generally, the performance of a web service changes over
time because of variations of network conditions and service
status. Hence, it is necessary to make the QoS predictors
time-aware. To do so, Zhang et al. propose a time-aware per-
sonalized QoS predictor by employing a tensor factorization
model [48]. Zhang et al. extend themodel proposed in [48] by
considering the non-negative constraint [49]. Next, some
other time-aware QoS predictors are proposed, including
spatial-temporal model [50], time-aware collaborative filter-
ing model [51], time-aware and sparsity-tolerant model [52],
and time-aware and privacy-preserving model [53]. Besides,
Syu et al survey the recent progress in time-aware QoS pre-
dictors [54]. For PLF, it can also be extended to a time-aware
QoS predictor by considering the time information.

6 CONCLUSIONS

In this paper, we propose a posterior-neighborhood-
regularized latent factor (PLF) model for achieving highly

accurate Quality-of-Service (QoS) prediction for web services.
PLF goes through three phases: primal LF extraction, poste-
rior neighbor identification, and posterior-neighborhood-reg-
ularized LF analysis. Extensive experiments are conducted on
a real-world benchmark dataset to evaluate PLF against the
state-of-the-art models. The experimental results validate
that: a) users’/services’ posterior-neighborhood information
is significantly effective for PLF to improve its prediction
accuracy, b) PLF has significantly better performance than the
state-of-the-art models in both prediction accuracy and pre-
diction efficiency, and c) PLF relies only on the user-service
matrix and does not require any additional information.
Besides, PLF has also been demonstrated that it performswell
in terms of both prediction accuracy and computational effi-
ciency on the large scale dataset.

Although PLF has shown promising prospects, several
issues remain unveiled: 1) how to make the parameters of
PLF self-adaptive based on particle swarm optimization [55]
so that they do not need to be inspected experimentally, 2)
how to extend PLF to iteratively and dynamically identify
users’/services’ neighborhood based on a deep-random-
forest structure [43], 3) as discussed in Section 3, the first two
steps of a PLF model focus on identifying neighborhood
based on an QoS matrix. Given that a QoS matrix can be
extremely sparse, it is necessary to investigate other efficient
neighborhood detectors like a random walk-based one [56],
[57] for a PLF model, and 4) as discussed in prior research
[48], [49], [50], [51], [52], [53], [54], modeling and acquisition
of temporal dynamics in QoS data is a vital issue in services
computing society. It appears highly important to further
develop the temporal-aware extension of a PLF model. We
plan to address them in our futurework.
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