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A Deep Latent Factor Model for High-Dimensional
and Sparse Matrices in Recommender Systems

Di Wu ', Student Member, IEEE, Xin Luo

Guoyin Wang

Abstract—Recommender systems (RSs) commonly adopt
a user-item rating matrix to describe users’ preferences on
items. With users and items exploding, such a matrix is usu-
ally high-dimensional and sparse (HiDS). Recently, the idea of
deep learning has been applied to RSs. However, current deep-
structured RSs suffer from high computational complexity.
Enlightened by the idea of deep forest, this paper proposes a deep
latent factor model (DLFM) for building a deep-structured RS
on an HiDS matrix efficiently. Its main idea is to construct
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a deep-structured model by sequentially connecting multiple
latent factor (LF) models instead of multilayered neural networks
through a nonlinear activation function. Thus, the computational
complexity grows linearly with its layer count, which is easy
to resolve in practice. The experimental results on four HiDS
matrices from industrial RSs demonstrate that when compared
with state-of-the-art LF models and deep-structured RSs, DLFM
can well balance the prediction accuracy and computational effi-
ciency, which well fits the desire of industrial RSs for fast and
right recommendations.

Index Terms—Big data, deep model, high-dimensional and
sparse (HiDS) matrix, latent factor (LF) analysis, recommender
system (RS).

I. INTRODUCTION

N THIS era of big data, people suffer the serious problem

of information overload [1]. They are inundated by big
data and have been desiring for intelligent systems that can
truly find useful information from big data for them [2].
Recommender systems (RSs), which can guide people to
obtain desired information out of billions of bytes, have
been proven to be highly useful in addressing this issue [3].
Nowadays, RSs have been widely adopted in numerous online
services, such as social media sites, e-commerce, and online
news [4], [5].

So far, various models are proposed for implementing
RSs, where a very important branch is collaborative filter-
ing (CF) [6]-[17]. Commonly, a CF-based RS is developed
based on a user-item rating matrix [18]-[20], where each col-
umn denotes a specified item (e.g., book, music, and movie),
each row denotes a specified user, and each entry denotes
the corresponding user’s evaluation on the corresponding item.
Since the number of items can be very large in an industrial
RS like Taobao [21], it is impossible for a user to touch all of
them. Therefore, high-dimensional and sparse (HiDS) matri-
ces with numerous missing data are frequently encountered in
CF-based RSs [22]-[24].

A CF-based RS essentially exploits an HiDS matrix to
predict involved users’ potential preferences. In other words,
the main task of a CF-based RS is to perform missing data esti-
mation for an HiDS matrix subject to globally high accuracy
and other requirements, like high computational and storage
efficiency [18], [19]. Great efforts have been made to address
this issue, resulting in a pyramid of CF-based models [3].
Among them, one highly important and successful branch is
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the latent factor (LF) models that are highly accurate and
scalable under many circumstances [18], [19], [25]-[27].

An LF model (LFM) works by building a low-rank approxi-
mation to a given HiDS matrix based on its known entries only.
It maps both users and items into the same low-dimensional
LF space, trains desired LFs on the existing ratings, and then
predicts the missing ratings in the given HiDS matrix heav-
ily relying on these obtained LFs. So far, many sophisticated
LFMs are developed to handle large-scale HiDS matrices,
including a bias-based LFM [25], a probabilistic one [28],
a nonparametric LFM [29], a regularized LFM [30], a non-
negativity-constrained LFM [18], a neighborhood-integrated
LFM [13], a clustering-preconditioned LFM [31], and a gen-
eralized momentum-incorporated LFM [14].

Recently, deep neural networks (DNNs) have attracted
much attention from both academic and industrial com-
munities owing to their incredible abilities in represen-
tation learning [32]. To date, they have been success-
fully applied to many fields [33]-[37] including CF-based
RSs [37]-[45]. Representative models of this kind include
an autoencoder-based model [38], a denoising autoencoder-
based model [39], a collaborative denoising autoencoder-
based model [40], a stacked autoencoder-based model [44],
a neural CF-based model [41], a recurrent neural network-
based model [42], a deep matrix factorization with neural
network-based model [43], and a hybrid deep structure-based
model [45].

Although DNNs have achieved great success in various
applications, they have obvious defects [46] which also exist
in the CF-based RSs with DNNs: 1) they require massive train-
ing instances, resulting in extremely high computational cost;
2) they contain too many hyper-parameters, which requires
very careful parameter tuning; and 3) they take complete
data as inputs, which are unavailable in RS. A CF-based RS
with DNNs needs to prefill a given HiDS matrix’s unknown
data with zeroes or other statistics of the observed data, result-
ing in unnecessarily high cost in both computation and stor-
age [41], [43]. For instance, the MovieLens 20M matrix (used
in this paper) collected by GroupLens has 20 000 263 instances
scattering in 138493 rows and 26744 columns [47]. Its
data density is 0.54% only, but the total number of its entries
is more than 3.7 billion. To manipulate such a huge and full
matrix is greatly difficult and sometimes impossible.

For adapting the principle of deep learning to more gen-
eral machine learning scenarios, Zhou and Feng [46] proposed
a deep forest to address the aforementioned defects of
DNNs. It connects a series of decision trees to obtain
a deeply structured model. With such designs, a general
learning model can also achieve highly competitive represen-
tation learning ability. Thus, it becomes possible to improve
a general learning model’s ability in representation learning
via adopting the principle of the deep forest [46]. Enlightened
by the principle of deep forest, we propose a deep LF
model (DLFM) for processing HiDS matrices from RSs for
the first time. The main idea of DLFM is to construct an
LF hierarchy for enhancing the resultant model’s represen-
tation learning ability. The main contributions of this paper
include.
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1) A DLFM with excellent abilities in representing an
HiDS matrix.

2) Detailed algorithm design and analyzes of DLFM.

3) Detailed empirical studies regarding DLFM’s
performance on four HiDS matrices generated by
RSs currently in use.

Note that DLFM is significantly different from the exist-
ing CF-based RSs with DNNSs in the following aspects: 1) its
deep structure is implemented following the principle of a deep
forest, thereby its learning process does not depend on a back-
propagation process and 2) it carefully handles incomplete
data of an HiDS matrix, thereby achieving high computational
and storage efficiency.

The rest of this paper is organized as follows. Section II
states the problem formulation. Section III presents
DLFM. Section IV provides the experimental results.
Section V discusses related issues. Finally, Section VI
concludes this paper.

II. PROBLEM FORMULATION

An RS commonly involves two large entity sets, i.e., a user
set U and an item set /. Given them, we recall the definitions
of an HiDS rating matrix [18], [26].

Definition 1: A rating matrix RIY*I!l has its each element
ry,i quantify the preference by user u € U on item i € I. Let
Rk and Ry, respectively, denote its known and unknown entry
sets, it is an HiDS rating matrix with U and [ being large and
IRk| < Ryl

Note that in an HiDS rating matrix R, its most entries are
unknown rather than zeroes in a traditional sparse matrix. To
extract desired LFs from it, we recall the definition of an LFM.

Definition 2: Given R, U, I, f, an LFM seeks for LF matrices
PIUS and QU to form R’s rank-f approximation R = PQ
where f <« min{|U]|, ||}

Note that f denotes the LF space dimension, and LF matri-
ces P and Q actually reflect the characteristics of U and I
hidden in Rg, respectively. To extract P and Q from Rk,
an objective function that measures the difference between R
and R is desired. Commonly, such an objective function can
be modeled by the Euclidean distance or Kullback-Leibler
divergence [18]-[20]. With the former, we have

52% Z (ru,i_;'u,i)zzé Z

ru,i€Rk ru,i€Rk

2

;
Fui= Y Pukdri| (1)
k=1

where ry i, Fu.is Puks and gi ; denote involved entries in R, ﬁ,
P, and Q, respectively. As indicated in [25] and [26], it is
important to integrate the Tikhonov regularization into (1) to
improve its generality

! : ! !
rui— Y _pukdri | A Y phit+ D4k
=1 k=1 k=1

2)

1
825 Z

rui€Rk

where A is the regularization constant controlling the regu-
larization effects. Note that in (2) we follow the strategies
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mentioned in [48] and [49] to connect a specified regulariza-
tion term, i.e., (Zk ]pu et Zk 1 qk ;) on each r,; € Rk, for
describing the imbalanced density of known data in R.

With (2) we formulate the problem of an LFM. Next, we
present our method of a DLFM.

III. DEEP LATENT FACTOR MODEL
A. Learning Rule With Stochastic Gradient Descent

As discussed in prior studies [25], [26], stochastic gradient
descent (SGD) is highly efficient in solving a bilinear objective
function (2). With it, we consider the instant loss Vr, ; € Rk

2

L f

2 2

T3 ARSI A
k=1 k=1

Eui = 3

f
- Zpu,ka,i
k=1

3)

Then, LFs involved in (3) are trained by moving them along
the opposite direction against the stochastic gradient of (3)
with respect to each single LF

08y,i

Puk < Puk — 1N

Vke{l,2,....f}: aupuk 4)
Gk,i <= Gki — Mg,
where n denotes the learning rate. Let 7,; = Z{:] Pukqk.I

then stochastic gradients in (4) are given by

88,,,,'

= _qk,i(ru,i - ?u,i) + )Vpu,k = _Qk,iAu,i + )Vpu,k
OPu.k
88,”
= —PukDu,i + Aqi.i 5)
Gk, i
where A, ; = ry ;—y,,; is the prediction error on r, ;. Thus, we

formulate the sum error between R and R on Rk as follows:

E = Z (ru,i - ?u,i)z- (6)

rui€Rk

B. Deep Structure of DLFM

Following the principle of a deep forest, we sequen-
tially connecting LF models with different N layers and
N — 1 nonlinear activation functions. Given N|U| x f user
LF matrices {Pi1, P2,...,Pn}, Nf x |I| item LF matrices
{01,092, ...,0n}, and N|U| x |I| low-rank approximation
matrices {IA€1,IA€2,...,RN}, DLFM seeks for P, and Q, to
obtain approximation R, for R first and then selects the best
approximation IAQf as the final output, where n € {1,2, ..., N}.
Its structure is given in Fig. 1.
As shown in Fig. 1, a DLFM works as follows.
1) Rk is taken as the initial input of the first layer.
2) Training LF matrices P, and Q, based on the input of the
nth layer and the learning rule mentioned in Section III-
A, we obtain IA?,Z.

3) Mixing the information in R, and R with a nonlin-
ear activation function for enhancing the generality of
a DLFM.

4) The output of the activation function is taken as the input

of the next layer.
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5) Repeating steps 2)—4) to achieve {Rl, Rz, R RN}, and
the best approximation IA?f is selected from them as the
final output.

Formally, the above process is given by

argmin &(Py, On)
Pn ) Q”

f o)
Zru.ieRK Fui = 2kt Py ik,i

+ A(ZZZI (p},’k)2+ Shoy (q,iy,.)z», ith=1
Ztu i€Rk (<~,,, Zk 1 l’u qu ,)2
+ A(Z{Zl (Pz,k) + Zf,;zl (q2l>2>> otherwise
@)

where p/!  and qz are single LFs in P, and Q, with n €

{1,2,...,N}, and r" Uis the output of the nonlinear activation
functlon de51gned as follows

Y(u,i) € Rg Vn € {2,3,...,N}:

rui if ?""_1 < Fmin
~n—1 ~n—1 n 1
Tyi = CD( i ,ru,,-) =\ rui 7, > rmax
?{,‘71 if otherswise
®)

where ?Z;l is a single element in IAQn_ 1, and rmin and rpax
denote the maximum and minimum values in Rg, respec-
tively. Note that if 7, ;" < rmin or 7/ PR Fmax, it 1S obvious
that the predictions generated by the n — 1th layer are not
correct. Hence, the physical meaning of (8) is to reset the
extremely unreasonable predictions generated by the current
layer to make the next layer describe R more precisely.

Then we consider the instant loss of (7) on each r, ;

, 2 . 2 2
(r,” - ZJ]‘(le:_kq/:,i) +2 (Zj;czl (Pi,k) + Y (qll(,i> )

0 ifn=1
Cui ~n—1 z
<’L,i Zk 1p“,‘qk> +)‘<Zk l(puk) +Zk l<qkl) )
otherwise.
)
We train each desired LF associated with r,; as follows:
agu i
Puk < Pug = N5,
Vke(l,2,....f}: e (10)
n u,l
i < dgi— "o,
where the stochastic gradients are, respectively, given by
O, 1 ~1 1
. —i i (rui = Py i) + 2Py g
ifn=1": = —qp AL+ A0
B, Al 1
g, = Py Byt Ay
Bssvi _ ~n—1 ~
i, = "k, z< - ’ﬁ,i) + AP 4
otherwise : = —q; Aui T A, (1T)
ae

n
wi _ __.n n n
aqr, = PukBui T M
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Fig. 1. Structure and processing flow of DLFM.

where A ; denotes the prediction error between 7 ; and 7 .
Thus, Rn is obtained as

N

R, = PO, 12)
and the generalized error E, between R and R, is given by

Ev=Y (rui—7)" (13)

rui€Rg

Finally, we select the best approximation IAQf for R with the
lowest generalized error Ef

Erf & min{E|, E, ...

. En}. (14)

C. Algorithm Design and Analysis

Based on Section III-B, we design Algorithm 1. We can
derive its computational complexity C as follows:

C=0()+Nx©O(U| x[f)+ O x|I))
+ Ny x (IRk| x Nx (f x2xO() +0() + 1)
+ N x O(|Rg]) + O(N — 1)
= OWN x fx (U] + )
+ Npu x (IRk| x N x 3f + 1) + N x |Rg| + N)
~ O(Ny, x |[Rk| x N x f). (15)

From (15), we see that the maximum iteration count N,,,
known entry count |Rg|, layer count N, and LF space dimen-
sion f decide the computational complexity of Algorithm 1.
As analyzed in [26], the computational complexity of an LFM
with SGD is ®(N,, x |Rg| x f). Thus, the computational cost
of DLFM is N times than that of an LFM. Obviously, the
extra computing burden of DLFM is caused by its deep struc-
ture and decided by its layer count. However, such extra cost is
linear with N. Given that an LFM is highly efficient in address-
ing an HiDS, the additional cost by DLFM is acceptable in
practice.

IV. EMPIRICAL STUDIES
A. Evaluation Protocol

We choose the task of missing data estimation on HiDS
matrices [18], [19] as an evaluation protocol. When address-
ing such a task, each involved model’s prediction accuracy for

missing data is the key performance indicator, which is com-
monly reflected by the root mean squared error (RMSE) and
the mean absolute error (MAE) [14], [18], [19], [22]-[24]

RMSE = || 3 (nuj =)’ | /IT]
rw,jel"
MAE = {3 [ruj = sl | /1T
ry €0

where I' denotes the testing set and |-|,5s denotes the absolute
value of a given number. The lower RMSE and MAE denote
higher prediction accuracy. In this paper, we use RMSE,
and MAE, to denote the RMSE and MAE of nth layer
of DLFM

2
RMSE, = || Y (rw,, _ r;]) /|r|
I’WJEF
rw’jel"

All experiments are run on a PC with 3.4 GHz i7 CPU
and 64 GB RAM. In addition, all models are implemented in
JAVA SE 7U60 to check their suitability for industrial usage.

B. Datasets

Four benchmark datasets, which are HiDS matrices from
industrial RSs, are selected to conduct the experiments to
validate the effectiveness of DLFM.

1) DI (Flixter Dataset): Collected by the Flixter
website [47], it contains 8 196 077 ratings in the range
of [0.5, 5] from 147612 users on 48794 movies. Its
density is 0.11% only.

2) D2 (Jester 1.1 M Dataset): Collected by the joke-
recommender Jester [47], it contains 1 186 324 continu-
ous ratings in the range of [—10, 10] from 24 983 users
on 100 jokes. Its data density is 47.32%. Note that D2 is
relatively denser than the other three datasets. We choose
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Algorithm 1: DLFM

Input: Rg
Operation Cost
Initializing f, A, n, N;y = max — training — round 0()
forn=1to N XN
Initializing P, randomly OU| x f)
Initializing Q) randomly O x [I])
end for ——
whiler = N,;,&& not converge XNy
for Vr, ; € Rx X|Rk|
forn=1to N xN
fork=1tof xf
computing pﬁ « according to (10) and (11) o)
computing qz ; according to (10) and (11) ()
end for ——
computing ?;’, ; according to (12) o)
end for -
end for ——
t=1r+1 )
end while ——
forn=1to N xN
computing Ej, according to (13) O(Rk])
end for ——
selecting kf- according to (14) OW-1)
Output: Ry

it to test the performance of DLFM on a different kind
of HiDS matrices.

3) D3 (MovieLens 10M Dataset): Collected by the
MovieLens system [50], it contains 10 000 054 ratings in
the range of [0, 5] from 69 878 users on 10677 movies.
Its rating density is 1.34% only.

4) D4 (MovieLens 20M Dataset): Collected by the
MovieLens system [50], it contains 20000 263 ratings
in the range of [0, 5] from 138493 users on 26744
movies. Its rating density is 0.54% only.

To eliminate the influence of ratings with different value
domains, we map the ratings of D2 into the range of [0, 5].
On all datasets, we adopt the 80%—20% train-test settings and
fivefold cross-validations. The detailed evaluation is executed
as follows: 1) each dataset is randomly split into five disjoint
subsets, each of which contains its 20% data; 2) four subsets
are selected as the training set and the remaining one as the
testing set; 3) build each tested model on the training set and
test its performance on the testing set; 4) sequentially repeating
steps 2) and 3) for five times to ensure that each fold can
serve as the testing set once; and 5) compute the average of
outcomes on all five folds to achieve final results.

C. Effects of Layer Count in DLFM

First, we analyze the performance of DLFM regarding its
layer count. In this set of experiments, the hyper-parameters
of DLFM are set as A = 0.01, n = 0.01, f = 20, and
N = 10, uniformly. Figs. 2 and 3 show the training process
of DLFM at different layers. Figs. 4 and 5 denote the RMSE
and MAE of DLFM as the layer becomes deeper. Note that
with only one layer, a DLFM degenerates into an original
LFM (OLFM). Hence, we adopt the results at the first layer of
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DLFM as the baseline. From Figs. 2-5, we have the following
important findings.

1) Ateach layer of DLFM, RMSE, and MAE keep decreas-
ing with more training iterations. As the layer count
increases, the decreasing rate of RMSE and MAE
becomes lower. However, the model convergence is
always ensured at each layer, as shown in Fig. 2. Hence,
DLFM’s deep design does not affect its base model’s
convergence at each layer.

2) RMSE and MAE of DLFM decrease first and then
increase with its layer count. The reason for this phe-
nomenon is quite complex, and we provide related
discussions regarding it in Section V discussions of
this paper. For RMSE, the best layer count of DLFM
is the 5 on D1 (0.9041), 7 on D2 (1.0038), 4 on D3
(0.7875), and 4 on D4 (0.7802), respectively. Compared
with the baseline, the accuracy gain by DLFM with the
best layer count is 3.90%, 0.51%, 1.83%, and 2.35% on
D1-D4, respectively. For MAE, DLFM has its best layer
count at 4 on D1 (0.6552), 2 on D2 (0.7761), 3 on D3
(0.6066), and 3 on D4 (0.5968), respectively. With the
best layer count, DLFM outperforms the baseline with
3.46%, 0.31%, 1.61%, and 1.97% in MAE on D1-D4,
respectively.

D. Effects of LF Dimension in DLFM

This set of experiments focus on the prediction accuracy of
DLFM as f increases from 5 to 80, as shown in Figs. 6 and 7.
The other hyper-parameters are set as A = 0.01, n = 0.01,
and N = 10, uniformly.

As depicted in Figs. 6 and 7, as f increases, the repre-
sentation learning ability of DLFM gets better, making the
resultant model achieve higher prediction accuracy. However,
such accuracy gain is much more obvious when f increases
from 5 to 20. As f is over 20, DLFM’s improvement in RMSE
and MAE becomes small. One possible reason for this phe-
nomenon is that when f = 20, the representation learning
ability of DLFM becomes strong enough, making it represent
a target HiDS matrix precisely. Consequently, the continuous
increase of f after 20 cannot bring significant improvement in
prediction accuracy.

E. Effects of Regularization Constant A in DLFM

This set of experiments focus on the effects of A in
DLFM. The other hyper-parameters are set as n = 0.01 and
f = 20, uniformly. Figs. 8 and 9 show the experimental results
as A increases from 0.002 to 0.02. We have recorded the RMSE
and MAE measured for DLFM with the best layer count as
A changes, along with the corresponding layer count. From
these results, we have the following interesting findings.

1) The best layer count of DLFM decreases as A increases.
For example, on D1, DLFM achieves the lowest RMSE
with 21 layers when A = 0.002. However, when
A = 0.02, the best layer count decreases from 21 to 3.
Similar results are observed on D2-4. They indicate
that an under-regularized DLFM requires more layers
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for improving the model generality; however, an over-
regularized DLFM cannot improve its representativeness
for an HiDS matrix with more layers.

high prediction accuracy for missing data of an HiDS
matrix.

2) A is crucial for the prediction accuracy of DLFM. As I+ Comparison Between DLFM and State-of-the-Art Models
A increases from 0.002 to 0.02, the RMSE and MAE Five models, i.e., an OLFM [25], a regularized
of DLFM decreases at first and then increases on all single-element-based  non-negative  matrix  factoriza-

datasets. For RMSE, the best A is 0.004 on D1, D2, and
D4, and 0.006 on D3. For MAE, the best A is 0.004 on
D1 and D4, and 0.006 on D2 and D3. Like in stan-
dard LFMs, A should be chosen with care to ensure

tion (RSNMF) [19], a fast non-negative LFM based on
generalized momentum (FNLF) [14], an item-oriented
auto encoder-based recommender (I-AutoRec) [38], and
a neural network-based matrix factorization (NeuMF) [41],
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are compared with DLFM in terms of prediction accuracy
for missing data along with computational efficiency. All
are sophisticated models able to well represent an HiDS
matrix. Note that OLFM, RSNMF, and FNLF are single-layer
models while I-AutoRec and NeuMF are DNNs-based
ones.

As indicated by prior research [19], [25], [38] and analyzes
in previous sections, the regularization constant A plays a vital
role in deciding an LFM’s performance. To draw fair compar-
isons, we tune it to achieve the best performance for all five
models as summarized in Tables I and II. Regarding the other

hyper-parameters, we set f = 20 for OLFM, RSNMF, FNLF,
and DLFM; n = 0.01 for OLFM and DLFM; y = 1.1 for
FNLF following [14]. For I-AutoRec, we set its hidden unit
count at 500 following [33]. Note that NeuMF is originally
designed for ranking optimization with a cross-entropy func-
tion as its objective, which cannot guarantee its prediction
accuracy for missing data of an HiDS matrix. For mak-
ing it comparable with its peers, we replace its objective
function with a Euclidean distance-based one. Moreover, we
set predictive factors at 64 and tune its hyper-parameters
following [41].
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TABLE I
LOWEST RMSE OF COMPARED MODELS

Dataset OLFM RSNMF FNLF I-AutoRec NeuMF DLFM
0.9224 0.9056 0.9038 0.8938 0.9174 0.9020
(A=0.04) (1=0.05) (4=0.06) (A=100) (A=0.01) (2=0.004)
Do 1.0087 1.0049 1.0025 1.0078 1.1047 1.0023
(4=0.02) (1=0.08) (A=0.08) (A=100) (A=0.01) (1=0.004)
D3 0.7981 0.7893 0.7881 0.7872 0.7977 0.7864
(1=0.03) (4=0.05) (4=0.04) (A=100) (4=0.01) (A=0.006)
0.7935 0.7819 0.7798 0.7802 0.7922 0.7787
P (1=0.03) (4=0.05) (4=0.04) (A=100) (4=0.01) (1=0.004)
TABLE II
LowWEST MAE OF COMPARED MODELS
Dataset OLFM RSNMF FNLF I-AutoRec NeuMF DLFM
. 0.6697 0.6550 0.6520 0.6472 0.6626 0.6537
(A=0.03) (1=0.03) (1=0.04) (A=100) (1=0.01) (1=0.004)
Do 0.7801 0.7769 0.7778 0.7905 0.7982 0.7750
(A=0.01) (4=0.04) (4=0.03) (4=100) (4=0.01) (1=0.006)
3 0.6144  0.6080  0.6068 06062  0.6121  0.6053
(1=0.02) (1=0.04) (1=0.03) (A=100) (4=0.01) (A=0.006)
0.6067 0.5977 0.5961 0.5947 0.6054 0.5956
P (1=0.02) (1=0.04) (1=0.03) (A=100) (4=0.01) (1=0.004)
TABLE III

TIME COST (IN SECONDS) OF COMPARED MODELS
Dataset OLFM RSNMF FNLF I-AutoRec NeuMF DLFM
DI 5878  406.94 900.12 5806.43  7014.32 1560.32
D2 19.65 35.67 10.3530 6990.14  5932.18 163.24
D3 56.23 442.21 902.87 50318.24 60267.25 549.42
D4 120.32 850.35 1305.48 60282.63 72168.56 1153.56

Tables I and II record the prediction accuracy of all com-
pared models. We see that DLFM achieves the lowest RMSE
on D2-4, and the lowest MAE on D2-3. In comparison,
I-AutoRec achieves the lowest RMSE on DI, and the low-
est MAE on D1 and D4. OLFM, RSNMF, FNLF, and NeuMF
cannot achieve so high prediction accuracy as their peers do.

Table III records the time cost of all compared models. We
find that: 1) I-AutoRec and NeuMF consume much more time
than their peers do due to their DNNs-based learning strat-
egy; 2) DLFM has relatively higher time cost than OLFM
and RSNMF because of its deep structure; and 3) DLFM has
comparable time cost to FNLF.

To better understand the comparison results, we conduct
the Friedman test [51], which is effective in validating the
performance of multiple models on multiple datasets, to ana-
lyze their statistical significance. First, we compute the average
rank on prediction accuracy (RMSE and MAE recorded in
Tables I and II) and computational efficiency (time cost

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 51, NO. 7, JULY 2021

TABLE IV
TESTED MODELS’ AVERAGE RANKING IN PREDICTION ACCURACY
AND COMPUTATIONAL EFFICIENCY

Average

b OLFM RSNMF FNLF I-AutoRec NeuMF DLFM
rank in
Prediction 5 (3 363 563 2.38 525 1.50
Accuracy
Time Cost  1.25 225  3.00 5.25 575 3.50

recorded in Table III) of all compared models. The computed
average ranks are shown in Table IV.

Let ai be the rank of the jth one of p tested models on
the ith one of g testing cases; the Friedman test compares
the average ranks of involved models, i.e., A; = Z?:l ai»/q.
Under the null hypothesis, which states that all the models are
equivalent and so their average ranks A; should be equal, the
Friedman value is

12 p(p+1)?
R (16)
plp+1)| 4 4
J=1~p
With (16), the testing score is given by
—Dy2
(¢ = Dxr (17

"Tar-n-x}
Note that (17) is distributed according to the F-distribution
with p — 1 and (p — 1)(¢—1) degrees of freedom [51]. Thus,
we can reject the null hypothesis with the critical level « if
FF is greater than the corresponding critical value.

In the experiments, six models are tested on four datasets.
Note that, on each dataset, we have two independent testing
cases for prediction accuracy while one testing case for com-
putational efficiency. Hence, we have p = 6 and g = 8, and Fr
with (5, 35) degrees of freedom for prediction accuracy. For
computational efficiency, we have p = 6 and ¢ = 4, and FF
with (5, 15) degrees of freedom. The critical value of F(5, 35)
and F(5, 15) for « = 0.05 is 2.49 and 2.90, respectively.
Therefore, if the testing scores of our experiments are greater
than them, we reject the null hypothesis.

According to Table IV and following (16) and (17), we
compute the testing scores for prediction accuracy and compu-
tational efficiency. They are 24.61 and 18. Both testing scores
are far greater than 2.49 and 2.90, respectively. Thus, we assert
that the tested models are significantly different in prediction
accuracy with a confidence level at 95%.

Moreover, to check whether DLFM has the significantly
better performance than each single compared model, we
also conduct the Wilcoxon signed-ranks test [51], [52] on
prediction accuracy (RMSE and MAE recorded in Tables I
and II) and computational efficiency (time cost recorded in
Table IIT) of all compared models. Wilcoxon signed-ranks test
is a nonparametric pairwise comparison procedure and has
three indicators: R+, R—, and p-value. The larger R+ value
indicates higher performance and p-value indicates the sig-
nificance level. Table V records the statistical results. From
it, we find that: 1) DLFM has significantly better prediction
accuracy than OLFM, RSNMF, FNLF, and NeuMF with a con-
fidence level at 95%; 2) DLFM achieves higher R+ rankings
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TABLE V
RESULTS OF WILCOXON SIGNED-RANKS TEST

Prediction accuracy Time cost
Comparison
R+ R- p-value R+ R- p-value
DLFM vs.
OLFM 36 0 0.0039 0 10 1.0000
DLFM vs.
RSNMF 36 0 0.0039 0 10 1.0000
DLFM vs.
FNLF 30.5 55 0.0430 6 4 0.6875
DLFM vs.
LAutoRec 20.5 15.5 0.3867 10 0 0.0625
DLFM vs.
NeuMF 36 0 0.0039 10 0 0.0625
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Fig. 11. Training process of I-AutoRec.

than I-AutoRec, which means that DLFM has slightly better
prediction accuracy than [-AutoRec; 3) DLFM’s computational
efficiency is significantly higher than that of I-AutoRec and
NeuMF with a confidence level at 90%; 4) OLFM and RSNMF
have significantly higher computational efficiency than DLFM;
and 5) DLFM has slightly lower computational efficiency
than FNLF.

V. DISCUSSION

A. Regarding the Training Process of DLFM
and DNNs-Based Model

For illustrating this point, we first depict the training
processes of DLFM and I-AutoRec (which is a representative
DNNs-based recommender proposed in [38]). From Fig. 10,
we see that at each layer of a DLFM, desired LF matrices
are fully trained with an iterative algorithm, i.e., SGD, to well
approximate the input data. Afterward, the achieved LF matri-
ces can produce the “raw” predictions, which will pass through
a nonlinear activation function as given in (8) to form the
input data for the next layer. Thus, in a DLFM, LF matri-
ces at each layer are trained within this layer to represent its
input matrix well; no cross-layer interactions are produced dur-
ing the training process. In other words, decision parameters
are well-trained to fit multiple targets in DLFM. In compar-
ison, as shown in Fig. 11, a DNNs-based model implements
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back-propagation on each layer to adjust the hidden weights
for approximating a unique input, like the user-rating vectors
in a u-autoender [38] model. During such a process, cross-
layer interactions are made in a backward way for tuning all
decision parameters to fit its unique input. From this point of
view, a DLFM model works in a significantly different way
from a DNNs-based deep model.

B. Effects of the Activation Function (8)

Considering the effects of the activation function (8). From
Fig. 1 we see that a DLFM’s multiple targets, besides the
original HiDS matrix, are generated as follows: 1) the input
data pass through nonlinear activation (8) for rescaling them
into the given range; 2) LFs in the active layer are iteratively
trained to fit the input data which are bent through the activa-
tion function already; and 3) the well-trained LFs are adopted
to generate the input data for the next layer. During such
a process, we see that the original learning objective is grad-
ually bent through the rescaling by the nonlinear activation
function (8), thereby improving the generality of a resultant
DLFM model.

C. Relationship Between DLFM’s Prediction Accuracy and
Its Layer Count

As analyzed in the previous section, the learning objective
of DLMF keeps being bent as the layer count increases owing
to its activation function (8). Initially, this can improve the
generality of a resultant DLFM. However, as the layer count
grows over the optimal threshold, a resultant DLFM can suffer
under-fitting since its learning objective is bent too much. This
can be also justified by the compound effects regarding deep
structure and regularization in a DLFM model: as shown in
Section IV-E, its best layer count decreases as A increases and
vice versa.

From this point of view, DLFM’s each layer bent its learn-
ing objective and works compatibly with its regularization
terms. It can initially improve the generality of a resultant
DLFM but also make it suffer under-fitting as the layer count
goes over the optimal threshold. Under such circumstances,
a resultant DLFM becomes unable to approximate the learning
objective well.

Also, the optimal layer count of DLFM is data-dependent,
as depicted in Figs. 4-7. This is because the experimental
datasets differ from each other vastly in user count, item count,
instance count, and data density. DLFM’s optimal layer count
on a dataset, as its most important hyper-parameter, depends
heavily on such data characteristics. Hence, it keeps changing
as dataset changes.

D. How to Choose DLFM’s Layer Count Wisely?

From Sections IV-C and V-A, we learn that the optimal
layer of DLFM is dataset-dependent. To develop a practical
application, it is necessary to make the number of DLFM’s
cascade layers self-adaptive. We can achieve this by doing the
following steps when training a DLFM on a specific dataset:
1) splitting the training set into two patrts, i.e., growing set and
validation set; 2) using the growing set to grow the cascade
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layer, and the validation set to estimate the performance. If
growing a new layer cannot improve DLFM’s performance,
the growth terminates and the current layer count is used as
the final number of DLFM’s cascade layers; and 3) retraining
DLFM on the whole training set. To check whether DLFM can
self-adaptively decide the optimal number of cascade layers
on different datasets by doing the above steps, we conduct
some experiments on D1-D4. Concretely, we split 80% of
the training set as the growing set and the remain 20% as the
validation set. The experimental results show that DLFM finds
the optimal number of cascade layers is five on D1, seven on
D2, four on D3, and four on D4 for RMSE, respectively, which
is consistent with the results obtained in Section I'V-C.

E. Why Can DLFM Handle HiDS Data Efficiently Given
That It Is Indeed “Deep” Model?

Commonly, an existing deep recommender [37]-[45] adopts
a conventional sparse matrix as the input. Since it depends on
frequent matrix manipulations, it needs to prefill all entries
in Ry with zeroes. We draw this conclusion based on careful
investigations into the source codes of existing deep recom-
menders. In comparison, considering a DLFM, its learning
objective and training process are defined on Rx from R,
thereby achieving low computational and storage costs. This
requires great efforts in handling the parameter update and
reconstruction of algorithm codes, but making us achieve
the most efficient deep model, i.e., DLFM, which can han-
dle large-scale HiDS matrices with the lowest computational
burden than its peers.

VI. CONCLUSION

HiDS matrices are frequently encountered in RSs, while
they contain rich information regarding various useful pat-
terns [18], [19], [54]. To represent an HiDS matrix more
precisely, this paper proposes a DLFM, which takes advan-
tage of a generalized deep learning structure, i.e., a deep
forest [46]. DLFM’s main idea is to construct a deep learn-
ing structure by sequentially connecting multiple LF models,
each of which acts as a layer of the whole model. Each
layer communicates with its subsequent layer with a nonlinear
activation function. With such designs, the data representa-
tion ability of the resultant model is significantly enhanced.
The experimental results on four HiDS matrices from indus-
trial RSs indicate that when compared with state-of-the-art LF
models and deep-structured RSs, DLFM can well balance the
prediction accuracy and computational efficiency.

In this paper, we choose a homogeneous LFM model as
the base model at each layer of DLFM. Can we expect fur-
ther accuracy gain by adopting heterogeneous LFM models at
its different layers? This issue remains open and we plan to
investigate into it in the future.
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