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Abstract—Online streaming feature selection (OSFS) has
attracted extensive attention during the past decades. Current
approaches commonly assume that the feature space of fixed
data instances dynamically increases without any missing data.
However, this assumption does not always hold in many real
applications. Motivated by this observation, this study aims
to implement online feature selection from sparse stream-
ing features, i.e., features flow in one by one with missing
data as instance count remains fixed. To do so, this study
proposes a latent-factor-analysis-based online sparse-streaming-
feature selection algorithm (LOSSA). Its main idea is to apply
latent factor analysis to pre-estimate missing data in sparse
streaming features before conducting feature selection, thereby
addressing the missing data issue effectively and efficiently.
Theoretical and empirical studies indicate that LOSSA can sig-
nificantly improve the quality of OSFS when missing data are
encountered in target instances.

Index Terms—Big data, computational intelligence, latent fac-
tor analysis (LFA), missing data, online algorithm, online feature
selection, sparse streaming feature, streaming feature.
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I. INTRODUCTION

IN THIS era of Information Explosion, people are inun-
dated by big data [1]–[3]. For example, Google maintains

more than 20-PB data and Flickr generates more than 3.6-TB
data per day [4]. The global data sum is predicted to grow
from 33 ZB in 2018 to 175 ZB by 2025 [5]. How to effi-
ciently filter the valuable information out of mass data for our
use has become a great challenge [1], [2], [6].

High dimensionality is one of the typical characteristics of
big data from various areas like healthcare, social media, bioin-
formatics, electronic commerce, and online education [7]. It
causes issues of computation costs and high storage, visu-
alization and comprehension difficulties, and performance
degradation on new data [8]. Hence, it is necessary to con-
duct feature selection on high-dimensional data [9]–[11]. As
such, the original data with high dimensionality can be reduced
into a low-dimensional feature space as well as keeping their
essential characteristics to well discriminate each involved
individual instance [12], [13].

Traditional feature selection approaches mostly assume
that the feature space is predefined and static [14], [15].
But in real-world applications, such space usually keeps
increasing dynamically [16], [17], making it impossible to
observe the full feature space in advance [12]. To address
this issue, many online streaming feature selection (OSFS)
approaches are proposed [12], [18]–[25]. For instance, Perkins
and Theiler [18] proposed the Grafting algorithm with a reg-
ularized framework. Zhou et al. [19] proposed an Alpha-
investing algorithm by using stream-wise regression. Wu et al.,
developed a Fast-OSFS algorithm [12] based on online
relevance analysis. Besides, other representative algorithms
include scalable and accurate online approach (SAOLA) [20]
and online selection for features based on adaptive sliding-
window (OSFASW) [21].

Despite their efficiency [12], existing OSFS approaches all
assume that the input streaming features are complete with-
out any missing data. Fig. 1(a) illustrates an example of this
assumption. However, it does not always hold because we
cannot completely collect dynamic features in many real appli-
cations [28], [29]. For instance, in an intelligent healthcare
platform [26], [27], since the features that describe a patient’s
symptoms may generate from different inspection equipment
(respiratory sensors, thermometers, pulse monitors, etc.) and
healthcare service providers (hospitals, insurance companies,
labs, etc.), it is impossible to collect all of them. Motivated
by this phenomenon, we formulate such dynamic features
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Fig. 1. Example of illustrating the different dynamic features scenarios.
Multiple colors denote the observed features, symbols “?” denote the unob-
served features (missing data). (a) Streaming features. (b) Sparse streaming
features.

as sparse streaming features. As illustrated in Fig. 1(b),
sparse streaming features flow in one by one with missing
data while their number of data instances remains fixed. Thus,
the problem of Online Sparse Streaming Feature Selection
(OS2FS) rises, i.e., how to implement online feature selection
from sparse streaming features without information loss?

Sparse data analysis and representation is a vital yet thorny
issue in the area of big data analysis and knowledge discov-
ery [30]–[37]. To date, a latent factor analysis (LFA)-based
approach has proven to be highly efficient in addressing
it [30]–[37]. For target sparse data, an LFA algorithm models
them into a high-dimensional and sparse (HiDS) matrix or ten-
sor and builds its low-rank approximation [32], [42]. Note that
all entries of the achieved approximation are available, which
can be considered as the representation to an HiDS matrix or
tensor based on its known data only. Hence, this approxima-
tion precisely represents the known data while estimates the
unknown ones of an HiDS matrix or tensor [40], [41]. From
this point of view, will it be capable of pre-estimating the
missing data of sparse streaming features, thereby establish-
ing high-quality OS2FS algorithms based on existing OSFS
ones?

Aiming at answering this question, we for the first time
propose a latent-factor-analysis-based online sparse-streaming-
feature selection algorithm (LOSSA). Its main idea is to
adopt LFA [30]–[37] to pre-estimate missing data in sparse
streaming features, and then adopt an OSFS algorithm on
the achieved complete features to implement precise feature
selection. We attempt to make the following contributions.

1) Formulation of OS2FS Problem: The problem of OSFS
is generalized to include online sparse streaming feature
selection (OS2FS), which is more frequently encoun-
tered in real applications.

2) LOSSA Algorithm: This algorithm is compatible with
existing OSFS algorithms as well as helps them in
implementing high-quality OS2FS without significant
modifications, thereby establishing a new direction
in performing OS2FS from the perspective of sparse
data representation learning.

3) Theoretical analysis of the proposed lossa algorithm,
including convergence analysis, algorithm design, and
time complexity analysis. From these analyses, the
performance of an LOSSA algorithm is theoretically
guaranteed.

Empirical studies on 12 benchmark datasets from vari-
ous big data-related applications are carefully conducted to
evaluate LOSSA’s performance. The results demonstrate that
compared with existing OSFS algorithms, an LOSSA algo-
rithm can effectively improve them to handle the OS2FS
problem.

Section II introduces the preliminaries. Section III presents
LOSSA. Section IV provides the experimental results.
Section V discusses related studies. Finally, Section VI con-
cludes this article.

II. PRELIMINARIES

A. Notations

Table I summarizes the adopted symbols of this article.

B. Online Feature Selection From Feature Stream

We first define streaming features and OSFS as follows.
Definition 1 (Streaming Features [12]): Supposing an

instance set that has M instances and a feature set F that
has N features are given. Let F = {F1, F2, . . . , FN} where
Fn = [f1,n, f2,n, . . . , fM,n]T , n ∈ {1, 2, . . . , N}, is a vector that
corresponds to M instances. Streaming features are encoun-
tered when F is presented sequentially. At each time point n,
we only observe Fn as N is unknown.

Definition 2 (OSFS [12], [20]): Let On−1 =
{F1, F2, . . . , Fn−1} be the observed streaming features
set till time point n − 1. Let Sn−1 ⊆ On−1 be the selected
streaming features set at time point n–1. OSFS is taken at
a time point n to select a minimum subset Sn from Sn−1∪{Fn}
to maximize a resultant model’s performance.

C. Latent Factor Analysis

LFA [30]–[37] originates from decomposition-based matrix
methods [38], [39]. It is widely adopted in many big data-
related applications like a recommender system [40], [41].
Given a sparse matrix, an LFA model estimates its missing
data by training latent factor matrices based on its known
data only [32], [42]. We recall its definition [30]–[32], [43].

Definition 3 (LFA): Supposing a sparse matrix YW×Z is
given, an LFA model is to obtain the rank-d approximation
Ŷ for Y. It trains two latent factor matrices VZ×d and UW×d

on Y’s known entry set by minimizing the sum errors between
Ŷ and Y, where Ŷ = UVT .

With Definition 3, we see that how to model an objective
function to measure the sum errors between Ŷ and Y is very
crucial. Commonly, we adopt Euclidean distance to model
objective function for LFA [30]–[32], [37], [43]

ε(U, V) = 1

2

∥
∥
∥��

(

Y − Ŷ
)∥
∥
∥

2

F
= 1

2

∥
∥�� (Y − UVT)

∥
∥

2
F (1)

where � denotes the Hadamard product and � is a W × Z
binary index matrix defined as follows:

�w,z =
{

1, if yw,z is observed
0, otherwise

(2)

where �w,z denotes the entry at the wth row and zth column
of �. To avoid overfitting, L2-norm-based regularization is
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Fig. 2. Flowchart of LOSSA to achieve OS2FS.

TABLE I
SYMBOL ANNOTATIONS

incorporated into (1) [30]–[32], [43], resulting in

ε(U, V) = 1

2

∥
∥�� (Y − UVT)

∥
∥

2
F +

λ

2

(

‖U‖2F + ‖V‖2F
)

(3)

where λ is the regularization parameter. With an optimization
algorithm like stochastic gradient descent (SGD) to minimize
(3), U and V can be achieved conveniently.

III. PROPOSED ALGORITHM

A. Problem of OS2FS

Definition 4 (Sparse Streaming Features): Corresponding to
streaming features set F = {F1, F2, . . . , FN}, sparse streaming
features are encountered when there are some missing data
∀Fn = [f1,n, f2,n, . . . , fM,n]T , (n ∈ {1, 2, . . . , N}). Let F′ =
{F′1, F′2, . . . , F′N} indicates a set of sparse streaming features.
Then the missing data rate αn of F′n is computed by αn =
1 − |Kn|/M as Kn be the known entries set of F′n. At each
time point n, we only observe F′n as N is unknown.

Given F′, let O′n−1 = {F′1, F′2, . . . , F′n−1} be the observed
sparse streaming features set till time point n − 1. Let S′n−1
be the selected sparse streaming features set at time point
n − 1. Then, we have S′n−1 ⊆ O′n−1. The challenge of
OS2FS is to select a minimum subset S′n from S′n−1

⋃{F′n}
to maximize a resultant model’s performance at each time
point n. Assuming that the concerned model is a classifier with
C = [c1, c2, . . . , cM]T being a label vector for M instances,
we formulate the problem of OS2FS as

S′n = arg min
�

⎧

⎨

⎩
|�| : � = arg max

� ⊆S′n−1
⋃{F′n}

P(C|�)

⎫

⎬

⎭
(4)

where � and � denote a set. Hence, the problem of OS2FS
is to select a minimum subset S′n from S′n−1

⋃{F′n} at time
point n to maximize a classifier’s accuracy on M instances
with label C = [c1, c2, . . . , cM]T .

B. LOSSA

To make LOSSA as flexible as possible to improve existing
OSFS algorithms to handle OS2FS, we design its processing
flow, as shown in Fig. 2. LOSSA has two phases. Phase I pre-
processes sparse streaming features to complete their missing
data. Phase II performs feature selection from the completed
features. Next, a case starting from a time point n is given to
elaborate Phase I and Phase II of LOSSA.

1) Phase I: Let BM×BS buffer the arrived sparse streaming
features. When it is well filled from time point n to n+BS−1, it
consists of {F′n, F′n+1, . . . , F′n+BS−1}. To address its incomplete

data, we define a completed streaming feature matrix B̂ next.
Definition 5 (Completed Streaming Feature Matrix):

Supposing B = {F′n, F′n+1, . . . , F′n+Bs−1} is given. Its com-
pleted streaming feature matrix B̂ is B’s rank-d approximation
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achieved by training an LFA model on known entries set
of B. Features in B denoted by {F̂′n, F̂′n+1, . . . , F̂′n+Bs−1} are
completed streaming features.

According to Definition 5, to obtain B̂, it is necessary to
apply LFA to B. However, since B contains numerous missing
data, the objective function (3) needs to be reformulated to
a single-entry-based form as [30], [32]

∀m ∈ {1, 2, . . . , M} ∀j ∈ {n, n+ 1, . . . , n+ BS − 1}:

ε = 1

2

∑

f ′m,j∈Kj

(

f ′m,j −
d
∑

k=1

um,kvj,k

)2

+ λ

2

∑

f ′m,j∈Kj

(
d
∑

k=1

u2
m,k +

d
∑

k=1

v2
j,k

)

(5)

where Kj is the known entries set of F′j , f ′m,j is the mth element
of F′j , uw,k is the kth element of vector uw,., and vj,k is the kth
element of vector vj,.. Note that similar objective functions,
e.g., the compound rank-k projections [68], are provided to
address complete inputs effectively. However, (5) focuses on
the LFs (i.e., projections) related to the known entries of B
only. With such design, it efficiently and precisely represents
buffered sparse streaming features as shown in Fig. 2.

Consider the instant loss εm,j on a single entry f ′m,j in (5),
we have

εm,j = 1

2

(

f ′m,j −
d
∑

k=1

um,kvj,k

)2

+ λ

2

(
d
∑

k=1

u2
m,k+

d
∑

k=1

v2
j,k

)

.

(6)

As analyzed in [31], [32], and [44], SGD has the advantage
of easy implementation and fast convergence rate. Hence, we
adopt SGD to minimize (6)

∀k ∈ {1, 2, . . . , d} :

{

um,k ← um,k − η
∂εm,j
∂um,k

vj,k ← vj,k − η
∂εm,j
vqj,k

(7)

where η is the learning rate. By combining (6) and (7), we
have training rules as follows:

On f ′m,j, for k = 1 ∼ d
⎧

⎨

⎩

um,k ← um,k + ηvj,k

(

f ′m,j −
∑d

k=1 um,kvj,k

)

− ληum,k

vj,k ← vj,k + ηum,k

(

f ′m,j −
∑d

k=1 um,kvj,k

)

− ληvj,k.

(8)

With (8), all known entries in B are sequentially adopted to
train U and V in one iteration. As the model converges, U and
V are utilized to build B̂, i.e.,

B̂ = UVT . (9)

Note that the theoretical convergence analysis of Phase I is
given in the Appendix.

2) Phase II: Let Ŝ′n−1 be the completed streaming features
set in which features are selected from {F̂′1, F̂′2, . . . , F̂′n−1} till
time point n−1. Then, we present some definitions on F̂′n and
Ŝ′n−1 at time point n before introducing Phase II.

Definition 6 (Irrelevant Feature [45]): F̂′n is an irrelevant
feature to C, if

∀ζ ⊆ Ŝ′n−1 s.t. P
(

C|ζ, F̂′n
)

= P(C|ζ ). (10)

Definition 7 (Markov Blanket [12]): At time point n − 1,
a Markov blanket of C is a subset of Ŝ′n−1, represented as
MB(C)n−1, MB(C)n−1 ⊆ Ŝ′n−1, satisfying

∀ζ ⊆ Ŝ′n−1 −MB(C)n−1

s.t. P(C|MB(C)n−1, ζ ) = P(C|MB(C)n−1) (11)

where Ŝ′n−1−MB(C)n−1 denotes the subset of Ŝ′n−1 excluding
MB(C)n−1.

Definition 8 (Redundant Completed Streaming Features):
At time point n, if F̂′n is not an irrelevant feature to C, the
redundant completed streaming features to C satisfy

∀R ∈ MB(C)n−1

⋃{

F̂′n
}

, ∃ζ ⊆ MB(C)n−1

⋃{

F̂′n
}

− {R}
s.t. P(C|R, ζ ) = P(C|ζ ) (12)

where R indicates a redundant completed streaming feature
to C and MB(C)n−1

⋃{F̂′n} − {R} indicates the subset of
MB(C)n−1

⋃{F̂′n} excluding {R}.
Although existing OSFS approaches work differently, their

processing flows are similar and can be concluded into two
main parts [12], [20]–[23]: 1) online relevance analysis and
2) online redundancy analysis. Next, we explain how to con-
duct online feature selection on B (obtained from Phase I)
in Phase II following Definitions 6–8 with a small example
starting from time point n to n+ BS − 1.

1) Initialization: Initializing a cache set CS = Ŝ′n−1, a label
vector C, and a Markov blanket MB(C)n−1 ⊆ CS that
satisfies ∀ ⊆ CS − MB(C)n−1 s.t. P(C|MB(C)n−1, ) =
P(C|MB(C)n−1).

2) Online Relevance Analysis: ∀i ∈ {0, 1, . . . , BS − 1}, a
feature F̂′n+i in B is sequentially analyzed with C fol-
lowing Definition 6. If a feature is irrelevant to C, i.e.,
∀ ⊆ CS s.t. P(C|ζ, F̂′n+i) = P(C|ζ ), it is discarded;
otherwise, it is added to CS.

3) Online Redundancy Analysis: Each feature Q in CS
is sequentially identified with C following Definition
8. If a feature is redundant to C, i.e., if ∀R ⊆
MB(C)n−1

⋃{Q}, ∃ ⊆ MB(C)n−1
⋃{Q} − {R} s.t.

P(C|ζR, F̂′n+i) = P(C|ζ ), it is removed from CS.
After the above three steps, the remaining features in CS

are the best-selected and completed streaming features at the
current time point n + BS − 1. Please note that Phase II of
LOSSA focuses on the task of streaming feature selection
on the completed streaming feature matrix B, which does not
involve convergence issues as discussed in [12] and [18]–[25].

C. Algorithm Design and Time Complexity Analysis

Algorithm Design: Based on the above analyses, we design
Algorithm LOSSA to handle the problem of OS2FS. Its pseudo
code is given in Table II, where Phase I consists of steps 4–21
and Phase II consists of steps 22–37.

1) Phase I: Steps 4–9 adopt a buffer matrix B (whose
column count BS is far less than the total number of
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TABLE II
ALGORITHM LOSSA

sparse streaming features) to cache the received sparse
streaming features. After B is built, LOSSA conducts an
LFA process to predict its missing data of B as given in
Steps 10–21. Thus, B is achieved and LOSSA goes to
Phase II.

2) Phase II: Steps 22–28 are online relevance analysis,
where function Dep(C, F̂′n+i|∅) denotes the conditional
dependence test between F̂′n+i and C given an empty set.
Steps 29–34 are online redundant analysis, where func-
tion Ind(C, Q|ζ ) denotes the conditional independence
test between Q and C given a subset. The conditional
dependence/independence tests can be implemented by
adopting G2 test [12], [69].

3) Output: After Phases I and II, S′ is output as the optimal
feature set at current time point n.

4) Repeat: When the feature stream keeps active, the above
process is repeated to update the optimal feature set.

Time Complexity Analysis: In comparison with current
OSFS approaches, such as Fast-OSFS [12], SAOLA [20], and
OSFASW [21], Algorithm LOSSA costs extra time to estimate
the missing data in sparse streaming features. As analyzed in
[30]–[32] and [43], LFA’s time complexity is mainly decided
by the target sparse matrix’s known entry count and latent

TABLE III
DETAILS OF SELECTED DATASETS

factor dimension. If the arrived sparse streaming features have
the size of M instances and N features, and their total miss-
ing data rate is α, then, LOSSA’s time cost of Phase I is
F̂′n+iO(M×N×(1−α)×d). Note that such extra computational
cost is acceptable in practice.

1) It is inversely proportional to α. In real applications,
sparse streaming features have massive missing data,
which enables the low computational cost of Phase I.

2) It can be significantly reduced through parallelization.
According to [46] and [47], LFA can be parallelized
with an alternating SGD algorithm. On this basis, we
can also parallelize (8) for Phase I with it.

IV. EXPERIMENTS AND RESULTS

A. General Settings

Datasets: We select twelve benchmark datasets from UCI
repositories [66], NIPS challenge [48], and studies in [49]
and [50]. They all are collected from real applications as
summarized in Table III.

Baselines: As analyzed in Section III, LOSSA is compatible
with existing OSFS approaches. To validate its performance,
we choose three state-of-the-art and representative OSFS algo-
rithms to carry out the experiments. They are Fast-OSFS [12],
SAOLA [20], and OSFASW [21]. Besides, random forest, sup-
port vector machine (SVM), and k-nearest neighbors (KNNs)
are chosen as the base classifier to check the quality of
selected features [51], [64], [65], [67]. All the parameters
adopted by these classifiers and algorithms are summarized
in Table IV. We, respectively, modify them to handle OS2

FS by integrating them into LOSSA. For the sake of brevity,
Fast-OSFS, SAOLA, and OSFASW and their modified ver-
sions are remarked as M1, M1 + LOSSA (M1’s modified
version), M2, M2 + LOSSA (M2’s modified version), M3,
and M3 + LOSSA (M3’s modified version), respectively.

Experimental Designs: State-of-the-art OSFS algorithms
and their modified versions boosted by LOSSA are carefully
compared to validate the effectiveness of LOSSA. Meanwhile,
LOSSA’s sensitivity to hyperparameters, including missing
rate α, regularization parameter λ, and size of buffer matrix BS,
are also carefully tested (default settings of hyperparameters
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TABLE IV
ALL THE PARAMETERS USED IN THE EXPERIMENTS

are BS = 10, λ = 0.01, α = 0.1, and d = 10). Its con-
vergence ability in Phase I and computational efficiency are
also revealed. A fivefold cross-validation strategy is adopted to
evaluate the classification accuracy on each dataset. Besides,
we repeat the whole experiment five times and report the
average results with standard deviations. Note that the test-
ing data have no missing data, while the training data have
different situations of missing data that are explained in the
corresponding sections. We run the experiments on a personal
computer (Intel i7 CPU 3.4 GHz, RAM 16 GB).

B. Convergence Analysis of LOSSA in Phase I

To analyzes the convergence of LOSSA in Phase I, i.e.,
preprocessing sparse streaming feature matrix B to build com-
pleted streaming feature matrix B, we test LFA’s prediction
accuracy for the missing data of B with different missing
data rates α for validating its convergence ability. The root
mean squared error (RMSE) [30]–[32] is adopted as the accu-
racy metric. Fig. 3 presents the training curve of LFA on all
datasets. From it, we clearly see that LFA is convergent in
predicting the missing data of B. It fast achieves a promis-
ing prediction accuracy on all the datasets. As α increases,
the prediction accuracy decreases. For example, the lowest
RMSEs are 0.0134, 0.0139, 0.0256, 0.0753, and 0.3311 when
α is set as 0.1, 0.3, 0.5, 0.7, and 0.9, respectively. The reason
is that as α increases, training data decrease, thus generat-
ing the LFA model with less information. However, to be
shown next, even with less information, LOSSA can help an
algorithm select high-quality features from sparse streaming
feature data.

C. Selected Features Analysis

Situations of Selected Features: For LOSSA, the hyperpa-
rameters are fixed as α = 0.1, BS = 10, and λ = 0.01. The
situations of selected features by original algorithms and their
modified versions are recorded on Table V. We test original
algorithms on streaming features that have no missing data,
while testing their modified versions on sparse streaming fea-
tures that have 10% missing data. Then, we have the following
findings.

1) The number of selected features by original algorithms
varies on the same dataset. This phenomenon indicates
that original algorithms have different characteristics in
feature selection.

2) With LOSSA, modified algorithms are likely to select
the same features as their original versions on most
datasets.

Hence, the above findings validate that LOSSA is com-
patible with state-of-the-art OSFS algorithms. Moreover, it
efficiently improves them to handle OS2FS as well as keep
the quality of selected features even with incomplete inputs.

Classification Accuracy of Selected Features: This para-
graph analyzes the above-selected features’ quality by employ-
ing them to train a classifier to evaluate its classification
accuracy. In detail, we, respectively, adopt the features selected
by the original algorithm and its modified version to train two
different classifiers on each dataset. Then, we compare the
accuracy of the two classifiers. Table VI records the com-
parison results. We highlight these results where modified
algorithms have higher accuracy than their original versions.
From Table VI, we have the following findings.

1) Modified algorithms entirely achieve lower accuracy
than their corresponding original ones on D2. One pos-
sible reason is that modified versions have selected
different and fewer features, as recorded in Table V.

2) With KNN and SVM as the base classifier, modified
algorithms obtain higher accuracy than their correspond-
ing original ones on most datasets.

3) With Random Forest as the base classifier, modified
algorithms reach very close accuracy to their original
ones.

D. Impacts of Missing Data Rate α

In the experiments, we increase the missing data rate α of
sparse streaming features from 0.1 to 0.9, where BS = 10.

Detailed Accuracy on D1: The detailed accuracies of dif-
ferent algorithms with different classifiers on D1 are recorded
in Table VII, where we see that accuracy does not decrease
as α increases. Especially, there are many cases that mod-
ified algorithms have better accuracy than their correspond-
ing original ones (the highlighted cases). In general, when
α = 0.2, 0.4, 0.5, 0.6, 0.7, and 0.9, the average accuracy on
sparse streaming features is higher than that on streaming
features. Moreover, to check whether there are significant
differences between original algorithms and their correspond-
ing modified ones, we conduct the pairwise comparison on
the accuracies recorded in Tables VII with Wilcoxon signed-
ranks test [53]. In detail, we compare accuracies on sparse
streaming features one by one (from α = 0.1 to α = 0.9)
with that on streaming features. The statistical results are
presented in Table VIII, where R+ and R−, respectively,
denote the achieved ranks by modified algorithms and their
original version, and p-value denotes the probability that orig-
inal algorithms perform better than their modified versions.
From Table VIII, we observe that modified algorithms have
a larger rank value when α = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and
0.9. Only when α = 0.1 and 0.8, modified algorithms fail to
have a larger rank value. However, no one p-value is smaller
than 0.1 or larger than 0.9, which means that there are no
significant differences between original algorithms and their
modified ones.
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Fig. 3. Training process of LFA for predicting the missing data of B with different missing data rates α on all the datasets. (a) D1. (b) D2. (c) D3. (d) D4.
(e) D5. (f) D6. (g) D7. (h) D8. (i) D9. (j) D10. (k) D11. (l) D12.

TABLE V
SITUATIONS OF SELECTED FEATURES BY ORIGINAL ALGORITHMS AND THEIR MODIFIED VERSIONS, α = 0.1

Average Accuracy on All the Datasets: The average accu-
racy of different algorithms with different classifiers on
a specific dataset is recorded in Table IX. For example, the
last row of Table VII denotes the average accuracy of different
algorithms with different classifiers on D1, which is the same
as the third row of Table IX. From it, we see the following.

1) In general, accuracy does not evidently decrease or even
has a slight improvement when α is smaller than 0.6.

2) There are many cases that a modified algorithm with
LOSSA has higher accuracy than its corresponding

original version, such as on D1 with α =
0.2, 0.4, 0.5, 0.6, 0.7, and 0.9, on D3 with α = 0.1
and 0.2, on D4 with α = 0.5, on D5 with α =
0.1, 0.4, 0.5, etc.

3) There are opposite results on D2 and D12. A modified
algorithm achieves better performance than its original
version on any case of D12, while results are oppo-
site on D2. The reasons can be found from Tables V
and VI (α = 0.1), where we see that with the incor-
poration of LOSSA, the modified algorithms (including
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TABLE VI
USING THE SELECTED FEATURES (RECORDED IN TABLE V) TO TRAIN A CLASSIFIER FIRST AND THEN TESTING ITS ACCURACY (%), α = 0.1

TABLE VII
CLASSIFICATION ACCURACY (%) WHEN INCREASING α FROM 0.1 TO 0.9 ON D1

TABLE VIII
STATISTICAL RESULTS OF THE WILCOXON SIGNED-RANKS TEST ON THE

ACCURACIES RECORDED IN TABLES VII (ON D1)

M1 + LOSSA, M2 + LOSSA, and M3 + LOSSA)
select much fewer features than their original versions
(i.e., M1, M2, and M3) on D2 as shown in Table V,

thus some useful features are dropped. Then, the modi-
fied algorithms obtain a lower accuracy. On the contrary,
on D12, the modified algorithm M3 + LOSSA selects
much more features than its original version M3, mak-
ing M3 + LOSSA achieve much higher accuracy than
M3 as shown in Table VI.

Besides, we also conduct a pairwise comparison with the
Wilcoxon signed-ranks test for Table IX. The statistical results
are recorded in Table X, where we see that there are no
significant differences between original algorithms and their
modified versions when α < 0.6.

E. Impacts of Regularization Parameter λ

This set of experiments focus on λ’s effects in the fea-
ture selection results on all the datasets. The hyperparameters
are set as α = 0.1, BS = 10, and λ increases from 0 to 1.
Table XI records the average accuracy of different algorithms
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TABLE IX
INCREASING α FROM 0.1 TO 0.9 TO TEST THE AVERAGE CLASSIFICATION ACCURACY (%) ON ALL THE DATASETS

TABLE X
STATISTICAL RESULTS OF THE WILCOXON SIGNED-RANKS TEST ON THE

ACCURACIES RECORDED IN TABLE IX (ON ALL DATASETS)

with different classifiers on a specific dataset with such set-
tings. From Table XI, we find that λ has significant impacts on
the feature selection results. First, we see that considering the
models with λ = 0 and λ �= 0, (i.e., situations without/with
the regularization effects), the latter achieves better results on
most cases, which indicates that regularization is vital for
improving an LOSSA-incorporated algorithm’s performance
of feature selection because it can alleviate overfitting in
Phase I. Moreover, as λ increases over its optimal value, the
performance decreases evidently. These results demonstrate
that the regularization of Phase I has significant impacts on
LOSSA’s performance.

Note that although the results of Table XI show that the
optimal value of λ is data-dependent, a relatively small value
of λ (smaller than 0.03) enables relatively high accuracy.
Hence, we fix λ at 0.01 in the other experiments to practi-
cally evaluate the proposed LOSSA algorithm. However, it is
highly desired and useful to make λ adaptive according to the
characteristics of data, which is in our future research plan.

F. Impacts of Column Number of Buffer Matrix BS

This set of experiments researches how the column count
of buffer matrix BS impacts the feature selection on all the

datasets. We fix α at 0.1 and increase BS from 2 to 20.
Table XII, respectively, records the average accuracy of differ-
ent algorithms with different classifiers on a specific dataset.
From Table XII, we have three findings. First, we find that BS

has different impacts on different datasets. The optimal value
of BS varies across all the datasets. For example, the optimal
value of BS is 14 for D1, 2 for D2, 18 for D3, 8 for D4, 10 for
D5, 12 for D6, 6 for D7, 12 for D8, 14 for D9, 14 for D10,
4 for D11, and 6 for D12. The last row of Table XII is the
statistic of the optimal value of BS, which shows that the dis-
tribution of the optimal value of BS is irregular on the different
datasets. Second, we find that with the optimal value of BS,
LOSSA makes modified algorithms achieve higher classifica-
tion accuracy than their original versions on each dataset. In
particular, Table VI shows that modified algorithms do not per-
form well on D2. This problem, however, has been addressed
when BS = 2. Third, we find that larger BS does not lead to
better accuracy. One reason is that although more data can be
used to conduct LFA with larger BS, these data may con-
tain some irrelevant and redundant features, which impairs
the quality of estimations to missing data. Hence, BS should
also be chosen with care for ensuring the quality of feature
selection from a sparse feature stream.

G. Computational Efficiency

As analyzed in Section III-C, LOSSA needs extra compu-
tation to modify original algorithms to solve. Hence, this sec-
tion tests the computational efficiency of LOSSA. According
to [46] and [47], LFA can be implemented in parallel. In our
experiments, we use 16 CPU cores to implement Phase I for
LOSSA. On each dataset, we measure the CPU running time
that LOSSA costs in Phases I and II, respectively. Note that
the CPU running cost in Phase I denotes the extra computa-
tion caused by LOSSA and that in Phase II denotes original
algorithms’ computational efficiency. α and BS are set as 0.1
and 10, respectively. Fig. 4 records the results. From it, we
observe the following.

1) LOSSA spends less CPU running time in Phase I than
M3 costs in Phase II.
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TABLE XI
AVERAGE CLASSIFICATION ACCURACY AS λ INCREASES FROM 0 TO 1 (α = 0.1, BS = 10)

TABLE XII
AVERAGE CLASSIFICATION ACCURACY AS BS INCREASES FROM 2 TO 20 (α = 0.1)

Fig. 4. CPU running time of LOSSA costs in phases I and II with M1, M2,
and M3, respectively.

2) LOSSA spends comparable CPU time in Phase I to that
of M1 and M2 in Phase II. Besides, if we use more
CPU cores to implement Phase I for LOSSA in paral-
lel, its computational efficiency can be greatly improved.
Therefore, this set of experiments demonstrates that

LOSSA has high computational efficiency in developing
Fast-OSFS, SAOLA, and OSFASW to handle OS2FS.

H. Summary of Experiments

In the experiments, we conduct extensive compar-
isons between original algorithms (Fast-OSFS, SAOLA,
and OSFASW) and their modified versions enhance with
LOSSA. Based on the comparison results, we summarize
LOSSA’s advantages and disadvantages as follows.

Advantages:
1) When the input streaming features are incomplete, exist-

ing algorithms fail to handle them due to their lack of
missing data estimator, while an LOSSA algorithm can
handle them smoothly with its incorporated LFA com-
ponent in Phase I. From this point of view, existing
algorithms target at OSFS (i.e., OSFS) only, while an
LOSSA algorithm can address both issues of OS2FS
(i.e., OS2FS) and OSFS. That is the most significant
virtue of LOSSA when compared with state-of-the-art
OSFS algorithms.
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2) LOSSA is compatible with existing OSFS algorithms
without changing their mechanisms or working schemes.
Moreover, it helps them in implementing high-quality
feature selection in the case of OS2FS. Especially, when
the missing data rate α is smaller than 0.6, it can
effectively improve existing OSFS algorithms to handle
OS2FS with high accuracy.

Disadvantages:
1) It has to tune parameters (λ and BS) to achieve

the best performance. Currently, this issue can be
addressed via conducting pretuning process on warming-
up datasets. We plan to make this parameter self-
adaptive as future work.

2) It needs extra computation to complete missing
data of sparse streaming features in Phase I.
However, such extra computational cost is acceptable
in practice and can be significantly reduced through
parallelization [46], [47].

V. RELATED WORK

The proposed LOSSA is closely related to LFA on sparse
data. In it, LFA is adopted to complete the missing data of
sparse streaming features before conducting feature selection
owing to its high efficiency of storage and computation, as
well as high representation learning ability on sparse data [60].
Besides LFA, other techniques like multiple imputations,
expectation-maximization (EM), regression imputation, and
matrix completion, can also address such a problem [60]–[63].
However, multiple imputations, EM, and regression imputa-
tions do not perform well when the missing rate is high [60].
Candès and Recht [61] and Keshavan et al. [62], respec-
tively, proposed a matrix completion approach to address such
a problem with nice accuracy. However, they are expensive in
both computation and storage [63].

Meanwhile, the online feature selection problem can be fur-
ther categorized into two branches [7], i.e., online feature
selection from streaming data (OFSSD) and OSFS. OFSSD
assumes that the feature size remains fixed while data instances
increase over time [25], [56]–[59], while OSFS assumes that
the data instance count is fixed and the feature dimension
increases with time [12], [18]–[23]. In this article, we focus
on the latter, i.e., OSFS.

To date, great efforts have been paid to handle OSFS
issue [12], [18]–[25]. Perkins and Theiler [18] proposed the
Grafting algorithm based on a regularized framework. Since
Grafting needs to carefully tune its regularization parameter
before determining which feature is most likely to be selected,
it is ineffective to process the streaming features whose size
is unknown [12]. Zhou et al. [19] an Alpha-investing algo-
rithm by using stream-wise regression. Dhillon et al. [24]
extended this algorithm to handle the problem of multiple
feature classes. Although they can handle infinite stream-
ing features, they are limited by their dependence on prior
knowledge [23].

Wu et al. proposed an OSFS framework based on two parts,
i.e., online relevance analysis and online redundancy analy-
sis. Then, they develop the Fast-OSFS algorithm [12]. Based

on this framework, several algorithms have been proposed
recently, including an OGFS algorithm [25] that can handle
group streaming features with group structure information as
prior knowledge, an SAOLA algorithm [20] that is designed
for extremely high dimensional feature selection, an OSFASW
algorithm [21] that has high prediction accuracy and reduces
the selected features number by using self-adaptive sliding-
window sampling, an OFS-Density algorithm [22] that does
not need the domain information by using adaptive density
neighborhood relation, an OFS-A3M algorithm [23] that does
not also need the domain information and specify any param-
eter in advance by utilizing an adaptive neighborhood rough
set, ROSFSMI algorithm [76] that employs mutual information
in a streaming manner to evaluate the relevancy and redun-
dancy of features, SFS-FI [77] algorithm that can select
streaming features to interact with each other, and OGSFS-
FI algorithm [78] that considers feature interaction within and
between the streaming groups during feature selection.

The above algorithms are sophisticated OSFS algorithms
with high efficiency. However, they can only process stream-
ing features without missing data, while streaming features in
most real-world applications have missing data. The proposed
LOSSA, in comparison, makes significant progress in address-
ing the real-world feature selection with missing data. It fits
industrial needs more appropriately than the prior methods
when dealing with streaming features with missing data.

VI. CONCLUSION

This article proposes an LOSSA to handle OS2FS problem
well. Its main idea is to adopt LFA to pre-estimate the miss-
ing data of sparse streaming features before selection, thereby
implementing effective and efficient feature selection. It is
compatible with the current OSFS approaches. In particu-
lar, three state-of-the-art OSFS algorithms are enhanced with
LOSSA to conduct the experiments on twelve benchmark
classification datasets. The experimental results well validate
LOSSA’s capability of effectively boosting an OSFS algorithm
to address the issue of OS2FS precisely.

Note that some hyperparameters of LOSSA, including the
size of a buffer matrix and regularization coefficient, require
manual tuning that is time-consuming and tedious. It is vital
to make them self-adaptive through evolutionary computation
algorithms [54], [55] or other feasible frameworks to improve
LOSSA’s practicability. Meanwhile, representation learning is
another promising way to process high-dimensional data, like
neural networks-based one [74] and Bayesian-based one [75].
It is also highly interesting to extend LOSSA to be compatible
with representation learning approaches and gain more appli-
cations [79], [80]. We plan to address these challenging issues
in our future work.

APPENDIX

A. Theoretical Convergence Analysis of Phase I

This section theoretically analyzes the convergence of
Phase I in preprocessing sparse streaming feature matrix B to
completed streaming feature matrix B̂. First, we, respectively,
define L-smooth and strong convex function f (x) [70].
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Definition 9 [L-Smooth Function f(x)]: f (x) is L-smooth, if

∀x1, x2 ∈ R
d s.t. ‖∇f (x1)−∇f (x2)‖2 ≤ L‖x1 − x2‖2. (13)

Definition 10 [Strong Convex f(x)]: f (x) is strong convex if
there exists a constant δ > 0 satisfying

∀x1, x2 ∈ R
d s.t. f (x1) ≥ f (x2)+ ∇f (x2)(x1 − x2)

T

+ 1

2
δ‖x1 − x2‖22. (14)

Note that the learning objective (5) is nonconvex. Besides, it
is the sum of the instant loss (6), i.e., ε(U, V) =∑(m,j)∈Kj εm,j.
According to prior research [31], [32], [44], some relaxations
should be made to analyze the final convergence as follows.

1) Instant loss εm,j is considered instead of the sum loss
ε(U, V) because we adopt a single-shot SGD for each
update, which corresponds to the single element f ’m,j.

2) One-half of the nonconvex term is fixed to make the
instant loss εm,j convex, i.e., vj,. is treated as a constant
to show the model convergence with the update of um,..
Note that the update rule is symmetric for um,. and vj,..
Therefore, the convergence with the update of vj,. can
be achieved in the same way.

Lemma 1: The instant loss εm,j is L-smooth when L is the
maximum singular value for matrix (vT

j,.vj,. + λEd) and Ed is
a d × d identity matrix.

Proof: Assuming that uσ,. and uϕ,. are two arbitrary and
independent row-vectors of latent factor matrix U, we have

∇εm,j
(

uσ,.

)− ∇εm,j
(

uφ,.

) = −
(

f ′m,j − uσ,.vj,.

)

vj,. + λuσ,.

+
(

f ′m,j − uφ,.vj,.

)

vj,. − λuφ,.

= (uσ,. − uφ,.

)(

vT
j,.vj,. + λEd

)

.

(15)

With (15), we can achieve that
∥
∥∇εm,j

(

uσ,.

)− ∇εm,j
(

uφ,.

)∥
∥

2

=
∥
∥
∥

(

uσ,. − uφ,.

)(

vT
j,.vj,. + λEd

)∥
∥
∥

2
. (16)

According to the L2-norm properties of a matrix [71], we have
the following inequality:

∥
∥∇εm,j

(

uσ,.

)−∇εm,j
(

uφ,.

)∥
∥

2 ≤
∥
∥
∥

(

vT
j,.vj,. + λEd

)∥
∥
∥

2

× ∥∥uσ,. − uφ,.

∥
∥

2 (17)

where ‖(vT
j,.vj,. + λEd)‖2 denotes the largest singular value

of (vT
j,.vj,. + λEd). Based on the above inferences, we obtain

L = ‖(vT
j,.vj,. + λEd)‖2. Hence, Lemma 1 holds.

Lemma 2: The instant loss εm,j is of strong-convexity when
δ is the minimum singular value for matrix (vT

j,.vj,. + λEd).
Proof: Given arbitrary vectors uσ,. and uϕ,., we expand the

state of εm,j at uϕ,. Following the principle of Taylor-series:

εm,j
(

uσ,.

) ≈ εm,j
(

uφ,.

)+ ∇εm,j
(

uφ,.

)(

uσ,. − uφ,.

)T

+ 1

2

(

uσ,. − uφ,.

)∇2εm,j
(

uφ,.

)(

uσ,. − uφ,.

)T

⇒ εm,j
(

uσ,.

)− εm,j
(

uφ,.

)

= ∇εm,j
(

uφ,.

)(

uσ,. − uφ,.

)T

+ 1

2

(

uσ,. − uφ,.

)∇2εm,j
(

uφ,.

)(

uσ,. − uφ,.

)T
.

(18)

As shown in Definition 10, if εm,j is strong convex, we can
achieve that

εm,j
(

uσ,.

)− εm,j
(

uφ,.

) ≥ ∇εm,j
(

uφ,.

)(

uσ,. − uφ,.

)T

+ 1

2
δ
∥
∥uσ,. − uφ,.

∥
∥

2
2. (19)

Thus, Lemma 2 is equivalent to selecting δ to make the
following inequality true:
(

uσ,. − uφ,.

)∇2εm,j
(

uφ,.

)(

uσ,. − uφ,.

)T ≥ δ
∥
∥uσ,. − uφ,.

∥
∥2

2.

(20)

From the expression of εm,j, we can obtain that

∇2εm,j
(

uφ,.

) = vT
j,.vj,. + λEd. (21)

By combining (20) and (21), we only need to prove that
(

uσ,. − uφ,.

)(

vT
j,.vj,. + λEd

)(

uσ,. − uφ,.

)T ≥ δ
∥
∥uσ,. − uφ,.

∥
∥

2
2.

(22)

Furthermore, (22) is also equivalent to
(

uσ,. − uφ,.

)(

vT
j,.vj,. + λEd − δEd

)(

uσ,. − uφ,.

)T ≥ 0. (23)

According to the properties of the matrix, (23) is equivalent
to prove that (vT

j,.vj,. + λEd − δEd) is a positive semi-definite
matrix. As unveiled by [71], (vT

j,.vj,.+λEd− δEd) is a positive
semi-definite matrix when δ is the minimum singular value of
matrix (vT

j,.vj,.+λEd), and it satisfies positive semi-definiteness.
Hence, Lemma 2 holds.

Considering the tth iteration of LFA in Phase I, from (8)
we have the following update rule for um,. on a single entry
f ′m,j

uτ
m,.← uτ−1

m,. − ηt−1 · ∇εm,j

(

uτ−1
m,.

)

(24)

where uτ
m,. and uτ−1

m,. , respectively, denote the state of um,.

updated by the τ th and (τ −1)th entry in the tth iteration. Let
u∗m,. be the optimal state of um,., and we have

∥
∥uτ

m,. − u∗m,.

∥
∥

2
2 =

∥
∥
∥uτ−1

m,. − ηt−1∇εm,j

(

uτ−1
m,.

)

− u∗m,.

∥
∥
∥

2

2

=
∥
∥
∥uτ−1

m,. − u∗m,.

∥
∥
∥

2

2
− 2ηt−1

·∇εm,j

(

uτ−1
m,.

)(

uτ−1
m,. − u∗m,.

)T

+
(

ηt−1
)

∇εm,j

∥
∥
∥

(

uτ−1
m,.

)∥
∥
∥

2

2
. (25)

Based on Lemma 2, we achieve that

εm,j
(

u∗m,.

)− εm,j

(

uτ−1
m,.

)

≥ ∇εm,j

(

uτ−1
m,.

)(

u∗m,. − uτ−1
m,.

)T

+ 1

2
δ

∥
∥
∥u∗m,. − uτ−1

m,.

∥
∥
∥

2

2
. (26)

Owing to u∗m,. is the optimal state of um,., we have that
{∇εm,j

(

u∗m,.

) = 0
εm,j

(

u∗m,.

)

< εm,j
(

uτ−1
m,.

)

.
(27)
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By substituting (27) into (26), we see that

∇εm,j

(

uτ−1
m,.

)(

uτ−1
m,. − u∗m,.

)T ≥ 1

2
δ

∥
∥
∥uτ−1

m,. − u∗m,.

∥
∥
∥

2

2
. (28)

Thus, based on (28), (25) is equivalent to
∥
∥uτ

m,. − u∗m,.

∥
∥2

2 ≤
(

1− ηt−1δ
)∥
∥
∥uτ−1

m,. − u∗m,.

∥
∥
∥

2

2

+
(

ηt−1
)2∥∥
∥∇εm,j

(

uτ−1
m,.

)∥
∥
∥

2

2
. (29)

By taking the expectation of (29), we have

E
[∥
∥uτ

m,. − u∗m,.

∥
∥

2
2

]

≤
(

1− ηt−1δ
)

E

[∥
∥
∥uτ−1

m,. − u∗m,.

∥
∥
∥

2

2

]

+
(

ηt−1
)2

E

[∥
∥
∥∇εm,j

(

uτ−1
m,.

)∥
∥
∥

2

2

]

. (30)

Following [72], assume that there is a positive number z such
that

E

[∥
∥
∥∇εm,j

(

uτ−1
m,.

)∥
∥
∥

2

2

]

≤ z2. (31)

Thus, based on (31), (30) is equivalent to

E
[∥
∥uτ

m,. − u∗m,.

∥
∥

2
2

]

≤
(

1− ηt−1δ
)

E

[∥
∥
∥uτ−1

m,. − u∗m,.

∥
∥
∥

2

2

]

+
(

ηt−1
)2

z2. (32)

Let us take the learning rate ηt−1 = β/(δt) with β > 1, (32)
can be reformulated as

E
[∥
∥uτ

m,. − u∗m,.

∥
∥

2
2

]

≤
(

1− β

t

)

E

[∥
∥
∥uτ−1

m,. − u∗m,.

∥
∥
∥

2

2

]

+ 1

t2

(
βz

δ

)2

. (33)

By expanding the expression of (33) by induction, we obtain
a bound

E
[∥
∥uτ

m,. − u∗m,.

∥
∥2

2

]

≤ 1

t
max

{∥
∥
∥u1

m,. − u∗m,.

∥
∥
∥

2

2
,

β2z2

δβ − 1

}

(34)

where u1
m,. denotes the initial state of um,. at the tth iteration.

According to Lemma 1, εm,j is L-smooth and we can achieve
that

εm,j
(

uτ
m,.

)− εm,j
(

u∗m,.

) ≤ L

2

∥
∥uτ

m,. − u∗m,.

∥
∥

2
2. (35)

By taking the expectation of (35), we can obtain that

E
[

εm,j
(

uτ
m,.

)− εm,j
(

u∗m,.

)] ≤ L

2
E
[∥
∥uτ

m,. − u∗m,.

∥
∥2

2

]

. (36)

By substituting (34) into (36), we have the following deduc-
tion:

E
[

εm,j
(

uτ
m,.

)− εm,j
(

u∗m,.

)] ≤ L

2t
�(β) (37)

where we have

�(β) = max

{∥
∥
∥u1

m,. − u∗m,.

∥
∥
∥

2

2
,

β2z2

δβ − 1

}

. (38)

Then, we expand (37) on all the known entries of Kj

E

⎡

⎣
∑

(m,j)∈Kj

(

εm,j
(

uτ
m,.

)− εm,j
(

u∗m,.

))

⎤

⎦ ≤ ∣∣Kj
∣
∣

L

2t
�(β) (39)

where t→∞, we have |Kj|(L/2t)�(β)→ 0.

We can encounter the same situation when um,. is treated as
a constant. Although the learning objective (5) is nonconvex,
um,. and vj,. can be updated alternatively by SGD. Moreover,
as unveiled by [73], SGD requires the learning rate η ≤ 1/δt
in the tth iteration. Thus, following Lemma 2, the learning
rate in the tth iteration satisfies ηt−1 ≤ 1/δt, where δ is
the minimum singular value of the matrix (vT

j,. vj,. + λEd).
Besides, we see that the regularization does not affect the
convergence. Hence, the convergence analysis of Phase I
is completed.
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