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ABSTRACT 
Recommender systems (RSs) commonly describe its user-item 
preferences with a high-dimensional and sparse (HiDS) matrix 
filled with non-negative data. A non-negative latent factor (NLF) 
model relying on a single latent factor-dependent, non-negative 
and multiplicative update (SLF-NMU) algorithm is frequently 
adopted to process such an HiDS matrix. However, an NLF 
model mostly adopts Euclidean distance for its objective function, 
which is naturally a special case of α-β-divergence. Moreover, it 
frequently suffers slow convergence. For addressing these issues, 
this study proposes a generalized and fast-converging non-
negative latent factor (GFNLF) model. Its main idea is two-fold: a) 
adopting α-β-divergence for its objective function, thereby 
enhancing its representation ability for HiDS data; b) deducing 
its momentum-incorporated non-negative multiplicative update 
(MNMU) algorithm, thereby achieving its fast convergence. 
Empirical studies on two HiDS matrices emerging from real RSs 
demonstrate that with carefully-tuned hyperparameters, a 
GFNLF model outperforms state-of-the-art models in both 
computational efficiency and prediction accuracy for missing 
data of an HiDS matrix. 
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1 Introduction 
The rapid expansion world-wide-web has caused the problem of 
information overload. How to develop an intelligent system to 
filter the useful information out of massive data has become a 
heated issue. In such context, RSs have been proven highly 
efficient in addressing information overload by connecting 
valuable information to people actively, rather than passively, 
according to their information usage history [1-6, 39, 40]. 

In RSs, a user-item rating matrix [7-9] is usually the 
fundamental data source, where each entry is modeled according 
to the corresponding user-item usage history. High values in a 
rating matrix commonly denote strong user-item preferences 
[10-12]. With exponentially growing quantities of users and 
items in RSs, only a few items can be observed by each user. This 
phenomenon leads to the rating matrix high-dimensional and 
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sparse (HiDS) [7, 13, 14], which contains numerous missing 
values. For instance, the Douban matrix [15] collected by the 
Chinese largest online book, movie and music database includes 
58,541 items and 129,490 users. However, it only contains 
16,830,839 known ratings and the density is 0.22%. Although a 
rating matrix generated by RSs can be extremely sparse, it 
contains rich knowledge regarding various desired patterns like 
item clustering [16] and users’ potential favorites [17]. 

According to the previous work [18-21, 41], a latent factor 
(LF) model has been proven to address such an HiDS matrix 
efficiently. However, it fails to fulfill the non-negativity 
constraints. Note that an HiDS matrix in RSs is commonly 
defined to be non-negative [7, 22-24]. Therefore, non-negative 
features are able to better represent an HiDS matrix filled with 
non-negative data and describe hidden patterns like user profile 
features more precisely. 

For this purpose, great efforts have been made for performing 
non-negative LF analysis on HiDS matrices. The weighted non-
negative matrix factorization (WNMF) model by [25] represents 
the missing values through a binary weight matrix. The non-
negative and multiplicative update (NMU) [26] algorithm is 
applied to WNMF for extracting desired non-negative LFs. A 
non-negative matrix completion (NMC) model by [27] adopts a 
full approximation to the target matrix and then extract non-
negative LFs with the projected alternating least squares (ALS) 
[28]. Hernando et al. [29] propose a non-negative matrix 
factorization based on a Bayesian probabilistic model, which 
associates components to each user and each item with an 
understandable probabilistic meaning. Although these models 
can address such an HiDS matrix, they suffer from high 
computational and storage complexity since they rely on full 
matrices. 

For performing non-negative LF analysis on HiDS matrices 
more efficiently, a single latent factor-dependent, non-negative 
and multiplicative update (SLF-NMU) algorithm is proposed [7] 
to extract non-negative LFs. SLF-NMU greatly alleviates the 
computational and storage burden since it only relies on the 
known values of an HiDS matrix rather than on the full matrix. 
With the high efficient update algorithm, a non-negative latent 
factor (NLF) model is further proposed [7]. Given an HiDS 
matrix, NLF’s computational complexity is only linearly related 
to the known values. Meanwhile, its storage complexity is linear 
with the sum of its user and item counts only. 

Motivations. Although an NLF model is able to represent an 
HiDS matrix with low cost in both computation and storage, 
there are still some bottlenecks to be addressed urgently: 
a) NLF mostly relies on an objective function defined via 
Euclidean distance, which is naturally a special case of α-β-
divergence [30]. Note that the objective function has vital effects 
on prediction accuracy for missing values. Can an NLF model 
with α-β-divergence in its objective function enhance its 
representation ability for HiDS data? 
b) SLF-NMU is specifically designed for an HiDS matrix with low 
computational and storage complexity. However, it leads to slow 
convergence [7]. In other words, NLF models usually consume 
many iterations to converge, thereby resulting in considerable 

time cost on large-scale datasets. Hence, how to further achieve 
its fast convergence becomes highly significant. 

Contributions. Aiming at addressing the above issues, this 
paper innovatively proposes a generalized and fast-converging 
non-negative latent factor (GFNLF) model. The main 
contributions of this paper include: 
a) Adopting α-β-divergence in objective function for making 
NLF a generalized form, thereby enhancing its representation 
ability for HiDS data; 
b) Incorporating a generalized momentum method in SLF-NMU 
to obtain a momentum-incorporated non-negative multiplicative 
update (MNMU) algorithm, therefore greatly improving its 
convergence rate; 
c) Presenting algorithm design and analysis for a GFNLF model. 

We conduct extensive experiments on two HiDS matrices 
emerging from real RSs to justify GFNLF’s excellent performance 
on predicting missing values in HiDS matrices. 

The rest of this paper is organized as follows: Section 2 gives 
the preliminaries. Section 3 presents our methods. Section 4 
gives the experimental results. Finally, Section 5 concludes this 
paper. 

2 Preliminaries 

2.1 Problem Statement 
An HiDS matrix is commonly used for describing the certain 
interactions between users and items in RSs [31], which is 
defined as follows: 

Definition 1: Let U and I be two large entity sets; R|U|×|I| is a 
matrix where each value ru,i is connected with user u’s 
preference on item i. Let RK and RU denote the known and 
unknown entity sets. R is an HiDS matrix if |RK|≪|RU|. 

An NLF model builds a low-rank approximation to an HiDS 
matrix. Given R, it is defined as follows: 

Definition 2. Given R and RK, R̂ is R’s rank-f approximation 
built on RK only and R̂=XYT. Note that f denotes the rank of R̂ 
and f≪min{|U|,|I|}. X|U|×f and Y|I|×f denote the LF matrices 
corresponding to U and I. 

Note that R is commonly defined to be non-negative. For 
better representing the target matrix and describing its hidden 
patterns more precisely, X and Y are expected to be non-negative 
to achieve an NLF model. Hence, for such purposes, an objective 
measuring RK and the corresponding entry set in R̂ is desired. 
With Euclidean distance, such an objective function is 
formulated by: 
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and denotes the values in R̂. ||·||F computes 

the Frobenius norm of a matrix. The regularization coefficients 
λX and λY control the regularization effect, and the terms behind 
them are the regularization terms to avoid overfitting. 

2.2 An NLF Model 
An NLF model adopts the SLF-NMU algorithm to minimize 
objective (1) for extracting non-negative LFs from the known 
entity set RK. This algorithm firstly applies the additive gradient 
descent (AGD) to each desired LF, resulting in the following 
update rules: 
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where ηu,m and ηm,i denote the learning rates corresponding to 
xu,m and ym,i. Iu denotes the subset of I related to user u and Ui 
denotes the subset of U related to item i. For ensuring xu,m and 
ym,i non-negative during the updating process, SLF-NMU cancels 
the negative terms by manipulating ηu,m and ηm,i. Consequently, 
the update rules for xu,m and ym,i are as follows: 
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With (3), X and Y are achieved non-negative. 

3 Methodology 

3.1 An NLF Model with α-β-divergence 
The commonly adopted Euclidean distance in NLF models is 
naturally a special case of α-β-divergence [30], which is 
parameterized by the two tuning parameters, α and β. Given U, I, 
R and RK, the α-β-divergence measuring the dissimilarity 
between RK and the corresponding entry set in R̂ for an NLF 
model is defined as follows: 
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By integrating the regularization terms and non-negativity 
constraints into dα-β, a generalized objective function is: 
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The aforementioned analyses show that SLF-NMU algorithm 
is efficient to build an NLF model on HiDS matrices. To achieve 
a generalized form of SLF-NMU, this work analyzes the Karush-
Kuhn-Tucker (KKT) conditions of the objective function with a 
more solid deduction. 

Let Γ|U|×f and Κf×|I| be the Lagrangian multipliers 
corresponding to the constraints xu,m≥0 and ym,i≥0, respectively. 
Then we obtain the Lagrangian function corresponding to (5): 
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where the operator tr(·) computes the trace of matrix. 
Considering the partial derivatives of L with respect to xu,m and 
ym,i, we have the following deduction based on (6): 
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We have the following observations from (6) and (7): a) to 
achieve the local optima of L with respect to xu,m and ym,i, the 
partial derivatives in (7) should be set at zero simultaneously; b) 
the KKT condition of the Lagrangian function (6) is ∀u∈U, i∈I, 

m∈{1, …, f}: γu,mxu,m=0, κm,iym,i=0; 

With (7) and the KKT condition (6), we obtain: 
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Note that (8) can be rearranged as following equation: 
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With (9), the iterative expressions of xu,m and ym,i  are 
formulated as follows: 
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which is a generalized form of SLF-NMU algorithm. It can 
enhance representation ability for HiDS data by carefully 
choosing the values of α and β. Note that by substituting α=β=1 
into (10), we have the update rule (3) for an NLF model with 
Euclidean distance [7]. 

3.2 A Generalized Momentum Method 
As demonstrated by prior research [32], a standard momentum 
method can be used to accelerate a gradient descent (GD) 
algorithm significantly. The principle of a standard momentum 
method determines the current update state based on the current 
gradient and the latest update state. Given the decision 
parameter θ and objective function (θ), a standard momentum-
based GD algorithm is defined as follows: 
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where a0 denotes the initial state of the update velocity and is 
always set at 0. The update velocity of the nth and (n-1)th 
iteration is an and an-1, respectively, κ denotes the momentum 
control parameter, and η denotes the learning rate. From (11), we 
can see that a standard momentum-based GD algorithm depends 
on gradients explicitly. 

As shown in (10), SLF-NMU trains non-negative LFs 
multiplicatively for keeping their non-negativity and It depends 
on gradients implicitly. Therefore, a standard momentum 
method is incompatible with SLF-NMU. It means we need to 
adjust the standard momentum method to compatible with an 
algorithm implicitly depending on gradients. 

Let θ'n denote the predicted state of the decision parameter 
relying on the adopted algorithm (SLF-NMU in this paper) after 
the nth iteration, then we can calculate the update increment 
instead of explicit gradients as follows: 
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Subsequently, we can formulate the update velocity in the 
nth iteration based on (11): 
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Based on (11) and (13), a generalized momentum method can 
be obtained by reformulating a standard momentum method: 
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According to (14), we see that a generalized momentum 
method relies on the update increment, which is obtained by the 
latest state of the decision parameter and the predicted state of 
the decision parameter relying on SLF-NMU. Although SLF-
NMU algorithm depends on gradients implicitly, the update 
increment can still be achieved. Hence, a generalized momentum 
method is compatible with SLF-NMU. 

3.3 A GFNLF Model 
By combining Sections 3.1 and 3.2, we further propose the 
MNMU algorithm to improve the convergence rate, thereby 
achieving a GFNLF model. 

Let Xn-1 and Yn-1 denote the state of X and Y after the (n-1)th 
iteration, and X'n and Y'n denote the predicted state after the nth 
iteration with SLF-NMU, respectively. Therefore, the predicted 
state of X and Y of the nth iteration is given by: 
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Subsequently, the update increment caused by SLF-NMU is 
computed as: 
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Based on (12) and (13), a1 is calculated as follows: 
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where X0 and Y0 denote the initial state of X and Y, which are 
randomly generated and non-negative initial defined [7]. Thus, 
the update rule for X1 and Y1 is achieved based on (14): 
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By combining (18) with (17), we can obtain: 
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(19) 

which keeps the same with the third equation in (16). With it, 
the update increment of the 2nd iteration is given by: 
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where 2X 
and 2Y   denote the predicted states of X and Y after 

the 2nd iteration with SLF-NMU. According to (14), (18) and (20), 
a2 can be achieved by: 
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In this manner, the update rules for 3rd to nth iteration are 
similar to (21). Therefore, we achieve the update algorithm based 
on (17) and (21) as follows: 
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Note that the parameters update should be taken with respect 
to each LF with SLF-NMU. Hence, by combining (10) with (22), 
we design an MNMU algorithm: 
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(23) 

Note that the teams 
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   in (23) 
are probably negative since there is no guarantee that each 
single LF is non-decreasing during the whole training process. 
Hence, we truncate these two terms to zeroes if they turn into be 
negative, resulting in the following update algorithm: 
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 (24) 

With (24), we design the MNMU algorithm for a generalized 
and fast-converging non-negative latent factor (GFNLF) model. 
Note that when α=β=1 and κ=0, GFNLF is equal to NLF [7]. 

3.4 Algorithm Design and Analysis 
According to the above analyses, we develop the Algorithm 
GFNLF. As shown in Algorithm GFNLF, some auxiliary matrices 
are employed. For instance, four auxiliary matrices are employed 
for X, i.e., XA, XB, XC and XD. Among them, XA and XB are used 
for caching the training increment on each instance ru,i∈RK, and 
XC and XD are used for caching the intermediate results of the 
(n-1)th and (n-2)th iterations. Similar settings are applied to Y. 

Algorithm: GFNLF 

 
As given in Algorithm GFNLF, we analyze the computational 

cost. Then, we can formulate the computational complexity as 
follows: 

 
         .

GFNLF K

K

T n U I f R f

n R f
 (25) 
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Note that in (25) we adopt the condition |RK|≫max{|U|,|I|} to 
omit the lower-order-terms to achieve the final result reasonably. 
GFNLF’s computational complexity is linear with |RK| since n and 
f are both positive constants. Meanwhile, GFNLF only uses ten 
matrices, i.e., X, XA, XB, XC, XD, Y, YA, YB, YC and YD, along 
with U, I and RK. The storage cost only takes: 

 

5 5 6 6

         5 6 .

GFNLF K

K

S U f I f R U I

U I f R U I
 (26) 

Based on the above inferences, GFNLF is highly efficient in 
both computation and storage. 

4 Experimental Results 

4.1 General Settings 
Evaluation Protocol. For industrial applications, one major 
motivation for processing an HiDS matrix is to predict its 
missing values for implementing the full relationship mapping 
among involved entities. Owing to its popularity and usefulness, 
we adopt it as the evaluation protocol in our experiments. It is 
commonly measured by root mean squared error (RMSE) [33]:  

 ,

2

, ,
ˆ   | |,

u i T

u i u i T

r R

RMSE r r R

 (27) 

where RT denotes the test set and is disjoint with RK, r̂u,i denotes 
the generated prediction for the testing instance ru,i∈RT, which 
simulates the missing value at the uth row and ith column of a 
target HiDS matrix, and |∙| calculates the cardinality of a given 
set, respectively. All experiments are conducted on a Tablet with 
a 2..4GHz Xeon E5-2680 V4 CPU and 128GB RAM, and 
implemented in JAVA SE 8U172. 

Datasets. Two public HiDS matrices collected by real RSs 
currently used are included in our experiments. Hence, results 
on them are highly representative and useful. Their details are as 
follows: 
a) D1: MovieLens 20M. It is collected by the MovieLens system 
[34] maintained by the GroupLens research team. It has 
20,000,263 entries in (0.5, 5), from 138,493 users on 26,744 movies. 
Its data density is 0.54% only. 
b) D2: Dating Agency. It is collected by an online dating 
website LibimSeTi [35], with 17,359,346 known entries in the 
range of (1, 10), from 135,359 users on 168,791 profiles. Its data 
density is 0.076% only 

Note that we adopt the 80%-20% train-test settings and five-
fold cross-validation on all datasets. The training process 
terminates if: a) the iteration count reaches a threshold, i.e. 1000; 
and b) the gap of RMSE in two consecutive iterations becomes 
smaller than 5 10-6. 

Model Settings. For obtaining objective and precise results, 
we adopt the following settings: 1) Setting the regularization 
coefficients λ=λX=λY and fixing the LF dimension f=20; 2) 
Initializing X and Y with the same randomly-generated and non-
negative arrays to eliminate the impact caused by random initial 

guesses; 3) Repeating each set of experiments for 5 times and 
taking the average of the experimental outputs as their final 
results. 

4.2 Effects of α and β 
As discussed in Section 3, GFNLF’s objective function relies on 
α-β-divergence. Hence, α and β are the key parameters for 
deciding GFNLF’s performance. In this set of experiments, we 
validate the effects of α and β without momentum (κ=0) first. We 
fix λ=0.05 and the tested scales for α and β are both (0.2, 3.0). 
Figure 1 depicts the lowest RMSE of GFNLF for each value of α. 
Table 1 shows the optimal RMSE of GFNLF. Figure 2 shows 
GFNLF’s time cost per iteration as α and β vary. From them, we 
have the following finding: 

 

Figure 1: Lowest RMSE of GFNLF for each value of α. For 
each value of α, we record the lowest RMSE as β varies. 

 

Figure 2: Time cost per iteration as α and β vary. Color 
indicates the magnitude. 

Table 1: Optimal RMSE relying on α and β. 

 

a) As depicted in Figure 1, GFNLF’s RMSE for missing data in 
HiDS matrices is closely connected with the value of α and β. For 
each value of α, the lowest RMSE is different respecting to β. Of 
cause, the situation is similar if we take the value of β as the 
horizontal axis. There is always an optimal case of α and β to 
enable GFNLF to achieve the optimal RMSE on each dataset. For 
instance, on D1, GFNLF achieves the optimal RMSE with α=1.2 
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and β=0.8. On D2, the optimal case is α=1.0 and β=0.8. Moreover, 
the RMSE increases significantly as α is relatively small or large. 
b) As discussed in Section 3, we turn GFNLF into NLF by making 
α=β=1. As shown in Table 1, α=β=1 is not the optimal case, 
which corresponds to the frequently adopted Euclidean distance. 
For instance, on D1, GFNLF achieves the optimal RMSE at 0.7839 
with α=1.2 and β=0.8. However, the lowest RMSE is 0.7876 with 
α=β=1. The gaps of RMSE are 0.47%. Furthermore, the gap even 
reaches 2.50% on D2. These results indicate that the frequently 
adopted Euclidean distance may not be the best choice for NLF 
to achieve the highest prediction accuracy for missing data. 
c) As shown in Figure 2, the time cost per iteration is stable as α 
and β vary. From (24), the update rules of LFs depend on the 
same operation, which results in nearly the same constant time. 
However, we also observe slight fluctuations of time cost per 
iteration as α and β vary. The main reason is raising an arbitrary 
real number to the power of different α and β. 

4.3 Effects of λ 
As shown in (24), GFNLF’s performance also relies on the 
regularization coefficients λ=λX=λY. In this set of experiments, 
we fix α and β with the optimal case summarized in Table 1. 
Meanwhile, the tested scale for λ is (0.01, 0.15). Figure 3 depicts 
RMSE as λ varies. From them, we have the following findings: 
a) As shown in Figure 3, it is necessary to choose regularizing 
coefficients carefully to ensure high prediction accuracy. With 
too small or too big values of λ, RMSE increases. For instance, as 
shown in Figure 3(a), on D1, the RMSE with λ=0.01, 0.03, 0.05, 
0.07, 0.09, 0.11, 0.13 and 0.15 is 0.8113, 0.7898, 0.7839, 0.7901, 
0.8009, 0.8136, 0.8253 and 0.8372, respectively. The gap between 
the highest RMSE and lowest RMSE is 6.36%. The difference in 
RMSE is quite significant. 
b) The optimal value of λ is data-dependent. For instance, the 
optimal λ for D1 is 0.05. On D2, the lowest RMSE is achieved 
with λ=0.07. Note that the tuning process of λ is a tedious task, 
which can be addressed via offline tuning, or adopting empirical 
values. Of course, the ideal way is to pick up the optimal 
regularizing coefficients automatically. This clearly requires our 
future work. 

 

Figure 3: Lowest RMSE as λ varies. 

4.4 Effects of κ 
Although GFNLF has an outstanding performance on prediction 
accuracy according to Sections 4.2 and 4.3, it usually consumes 

many iterations to achieve the lowest RMSE without momentum 
(κ=0). Figure 4 shows the training process without momentum. 

 

Figure 4: Training process without momentum. 

As shown in Figure 4, it consumes 743 iterations on D1 and 
810 iterations on D2 to achieve the lowest RMSE. As discussed in 
Section 1, the main reason is that SLF-NMU leads to slow 
convergence. It results in considerable time cost on large-scale 
datasets which is unacceptable for industrial applications like 
online RSs. Hence, we need to improve its convergence rate. 

In this part, we mainly discuss the effects of momentum on 
convergence rate. Figure 5 depicts the training process as κ 
varies. Table 2 summarizes iterations and lowest RMSE as κ 
varies. The tested scale is (0, 1.4). From them, we have the 
following findings: 

 

Figure 5: Training process as κ varies. 

a) With appropriate κ, the generalized momentum method 
obviously improves its convergence rate without prediction 
accuracy loss, even a slight improvement. As recorded in Figure 
5(a) and Table 2, GFNLF consumes 493 iterations with κ=1.0 to 
achieve the lowest RMSE at 0.7814 on D1. However, it consumes 
743 iterations to achieve the lowest RMSE at 0.7839 with κ=0. 
The iterations decreases at 33.64% without prediction accuracy 
loss. The similar situation is more significant on D2. For instance, 
GFNLF consumes 195 iterations with κ=1.2, only 24.07% of 810 
iterations with κ=0. 
b) GFNLF’s training process is sensitive to κ. It is very important 
to choose the appropriate κ. Small κ eliminates the momentum 
effects, while large κ makes a learning algorithm overshoot a 
local optimum. This assertion is supported by Figure 5 and Table 
2. For instance, on D2, GFNLF consumes 790 iterations to achieve 
the RMSE at 1.8476 with κ=0.2. In contrast, with κ=1.2, GFNLF 
only consumes 195 iterations to achieve the RMSE at 1.8374. The 
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iterations decrease at 75.31% while the prediction accuracy 
increases at 0.55%. As κ grows too large, GFNLF suffers 
overshooting, which results in significant accuracy loss. For 
instance, on D2, GFNLF achieves the lowest RMSE at 1.8617 with 
κ=1.4, 1.30% higher than 1.8374 with κ=1.2. On D1, GFNLF is 
even impossible to converge with κ=1.2 and κ=1.4. 

Table 2: Iterations and lowest RMSE as κ varies. 

 

4.5 Comparison with State-of-the-art Models 
In this part of experiments, we compare GFNLF with the most 
widely used state-of-the-art models in terms of computational 
efficiency and prediction accuracy. The details of compared 
models are summarized in Table 3. 

To ensure a fair comparison, we adopt the following settings 
in terms of the hyperparameters in each model: 
a) For M1 and M2, we select the optimal hyperparameters 
discussed in Section 4; 
b) For M1-M3, we set LF dimension f=20. For M4 and M5, we set 
their hidden unit at the optimal value 500 following [36, 37]; 
c) The regularization coefficient is also vital for M3-M5 [7, 36, 
37]. Hence, we first draw a grid search with respect to them to 
seek for their optimal values on each dataset. 

Table 3: Details of compared models. 

 
Figure 6 depicts the lowest RMSE of compared models. Their 

time cost per iteration is depicted in Figure 7. Table 4 records the 

total time cost of compared models to achieve the lowest RMSE. 
From them, we have the following findings: 
1) Effectiveness evaluation 
a) M2’s prediction accuracy is competitive to its peers. On D2, 
M2 is able to achieve the best performance in prediction 
accuracy. For instance, as shown in Figure 6(b), M2 has the 
lowest RMSE at 1.8374, 0.58% lower than 1.8482 by M1, 1.44% 
lower than 1.8752 by M3, 0.39% lower than 1.8447 by M4, and 
0.26% lower than 1.8493 by M5. The situation is different on D1. 
M2 still outperforms M1, M3 and M4. Only M5 achieves higher 
prediction accuracy than M2. The gap is only 0.03%. These 
results indicate that M2 shows excellent performance in 
prediction accuracy for missing values. 
b) M1 and M2 obviously outperform M3 owing to its objective 
function being α-β-divergence. The phenomenon indicates that 
adopting α-β-divergence in NLF is able to enhance 
representation ability for HiDS data by carefully choosing the 
values of α and β. Moreover, compared M1 with M2, M2 
outperforms M1. For instance, M1 achieves the lowest RMSE at 
0.7839 on D1 and 1.8482 on D2. In contrast, M2 achieves the 
lowest RMSE at 0.7814 and 1.8374, respectively. This 
phenomenon indicates that the prediction accuracy is slightly 
improved with appropriate κ. 

 

Figure 6: Lowest RMSE of compared model. 

2) Efficiency evaluation 
a) The time cost per iteration of M1, M2 and M3 is almost the 
same level. For instance, as shown in Figure 7(a), on D1, the time 
cost per iteration by M1, M2, and M3 is 6.4593, 6.4856, and 6.4601 
seconds, respectively. By comparing M1 and M2, M2’s time cost 
per iteration is slightly higher than that of M1. The main reason 
is that the latter consumes more constant time in addressing the 
momentum term. We can make the similar conclusion on D2. It 
demonstrates that MNUM can improve the convergence rate 
without significantly increasing the time cost per iteration. 
b) M4 and M5’s time cost per iteration are much higher than its 
peers do due to their deep neural network (DNN)-based learning 
strategy. They need to cost many operations about matrix 
manipulation and updating weights and biases by back-
propagation. For instance, as shown in Figure 7(a), the time cost 
per iteration of M4 is 74.6492 seconds, about 11.5 times of M1-
M3 do. Without GPU acceleration in our experiment, it is indeed 
expensive to train a DNN-based LF model on a large-scale HiDS 
matrix. 
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c) M2’s computational efficiency is significantly higher than that 
of its peers. As recorded in Table 4, M2 obviously consumes less 
total time cost to achieve its lowest RMSE. For instance, on D1, 
M2 consumes 3197.3 seconds to achieve its lowest RMSE. This is 
66.62% of 4799.3 seconds by M1, 64.44% of 4961.3 seconds by M3, 
6.48% of 49343.1 seconds by M4, and 7.15% of 44712.8 seconds by 
M5. Note that although M2’s time cost per iteration is slightly 
higher than that of M1 and M3 as shown in Figure 7, M2’s 
iteration is obviously less due to adopting the generalized 
momentum method. 

 

Figure 7: Time cost per iteration of compared models. 

Table 4: Total time cost of compared models (second). 

 

4.6 Summary 
Based on the experimental results, we summarize that: 
a) By carefully selecting appropriate α and β, GFNLF 
outperforms NLF with Euclidean distance on prediction accuracy; 
b) The momentum-incorporated non-negative multiplicative 
update (MNMU) algorithm is able to significantly improve the 
convergence rate without accuracy loss; 
c) When compared with state-of-the-art models, GFNLF can 
achieve obviously higher computational efficiency as well as 
competitive prediction accuracy for missing values in HiDS 
matrices. 

5 Conclusion 
High-dimensional and sparse matrices (HiDS) matrices with 
non-negativity constraints are commonly encountered in RSs. 
High values in an HiDS matrix usually denote strong user-item 
preferences. NLF can address such matrices efficiently. However, 
NLF mostly adopts Euclidean distance for its objective function, 
which is naturally a special case of α-β-divergence. Moreover, it 
frequently suffers slow convergence. To address this issue, this 
paper innovatively proposes a generalized and fast-converging 
non-negative latent factor (GFNLF) model. We first turn NLF 
into a generalized form by adopting α-β-divergence to enhance 
its representation ability for HiDS data. Subsequently, we design 
a momentum-based single latent factor-dependent, non-negative 

and multiplicative update (MNMU) to achieve its fast 
convergence. Empirical studies show that GFNLF outperforms 
state-of-the-art models in both computational efficiency and 
prediction accuracy for missing data of an HiDS matrix. Hence, 
it is useful for RSs to desire highly efficient, accurate and non-
negative latent factor analysis. 

However, the performance of GFNLF depends largely on 
carefully tuning hyperparameters (α, β and κ). In this work, we 
pre-tune their values, but the tuning process is an inefficient 
task. Consequently, making them self-adaptation is an essential 
issue. According to prior research [38], evolutionary computing-
based frameworks may be useful for adaptive picking up the 
optimal hyperparameters. Of cause, great efforts are needed for 
redirecting such frameworks to GFNLF. We plan to address such 
issues in the future. 
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