

A Generalized and Fast-converging Non-negative Latent Factor
Model for Predicting User Preferences in Recommender

Systems

Ye Yuan
Chongqing Engineering Research
Center of Big Data Application for

Smart Cities
 Chongqing Key Laboratory of Big
Data and Intelligent Computing,

Chongqing Institute of Green and
Intelligent Technology, Chinese

Academy of Sciences, Chongqing,
China, yuanye@cigit.ac.cn

Xin Luo†
Chongqing Engineering Research
Center of Big Data Application for

Smart Cities
 Chongqing Key Laboratory of Big
Data and Intelligent Computing,

Chongqing Institute of Green and
Intelligent Technology, Chinese

Academy of Sciences, Chongqing,
China, luoxin21@cigit.ac.cn

Mingsheng Shang
 Chongqing Engineering Research
Center of Big Data Application for

Smart Cities
 Chongqing Key Laboratory of Big
Data and Intelligent Computing,

Chongqing Institute of Green and
Intelligent Technology, Chinese

Academy of Sciences, Chongqing,
China, msshang@cigit.ac.cn

Di Wu
 Chongqing Engineering Research Center of Big Data Application for Smart Cities

 Chongqing Key Laboratory of Big Data and Intelligent Computing, Chongqing Institute of Green and Intelligent
Technology, Chinese Academy of Sciences, Chongqing, China, wudi@cigit.ac.cn

ABSTRACT
Recommender systems (RSs) commonly describe its user-item
preferences with a high-dimensional and sparse (HiDS) matrix
filled with non-negative data. A non-negative latent factor (NLF)
model relying on a single latent factor-dependent, non-negative
and multiplicative update (SLF-NMU) algorithm is frequently
adopted to process such an HiDS matrix. However, an NLF
model mostly adopts Euclidean distance for its objective function,
which is naturally a special case of α-β-divergence. Moreover, it
frequently suffers slow convergence. For addressing these issues,
this study proposes a generalized and fast-converging non-
negative latent factor (GFNLF) model. Its main idea is two-fold: a)
adopting α-β-divergence for its objective function, thereby
enhancing its representation ability for HiDS data; b) deducing
its momentum-incorporated non-negative multiplicative update
(MNMU) algorithm, thereby achieving its fast convergence.
Empirical studies on two HiDS matrices emerging from real RSs
demonstrate that with carefully-tuned hyperparameters, a
GFNLF model outperforms state-of-the-art models in both
computational efficiency and prediction accuracy for missing
data of an HiDS matrix.

† X. Luo (Corresponding author) is also with the Hengrui (Chongqing) Artificial
Intelligence Research Center, Department of Big Data Analyses Techniques,
Cloudwalk, Chongqing, China. Y. Yuan is also with the University of Chinese
Academy of Sciences, Beijing, China.
This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW '20, April 20-24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7023-3/20/04
https://doi.org/10.1145/3366423.3380133

CCS CONCEPTS
• Computing methodologies • Machine learning • Machine
learning approaches • Factorization methods

KEYWORDS
Non-negative latent factor, α-β-divergence, Momentum, High-
dimensional and sparse, Recommender system, User preference

ACM Reference format:

Ye Yuan, Xin Luo, Mingsheng Shang and Di Wu. 2020. A Generalized
and Fast-converging Non-negative Latent Factor Model for Predicting
User Preferences in Recommender Systems. In Proceedings of WWW '20:
The Web Conference 2020 (WWW '20), April 20-24, 2020, Taipei, Taiwan.
ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3366423.3380133

1 Introduction
The rapid expansion world-wide-web has caused the problem of
information overload. How to develop an intelligent system to
filter the useful information out of massive data has become a
heated issue. In such context, RSs have been proven highly
efficient in addressing information overload by connecting
valuable information to people actively, rather than passively,
according to their information usage history [1-6, 39, 40].

In RSs, a user-item rating matrix [7-9] is usually the
fundamental data source, where each entry is modeled according
to the corresponding user-item usage history. High values in a
rating matrix commonly denote strong user-item preferences
[10-12]. With exponentially growing quantities of users and
items in RSs, only a few items can be observed by each user. This
phenomenon leads to the rating matrix high-dimensional and

498

mailto:msshang@cigit.ac.cn
mailto:wudi@cigit.ac.cn
https://doi.org/10.1145/3366423.3380133
https://doi.org/10.1145/3366423.3380133

WWW '20, April 20-24, 2020, Taipei, Taiwan Ye Yuan et al.

sparse (HiDS) [7, 13, 14], which contains numerous missing
values. For instance, the Douban matrix [15] collected by the
Chinese largest online book, movie and music database includes
58,541 items and 129,490 users. However, it only contains
16,830,839 known ratings and the density is 0.22%. Although a
rating matrix generated by RSs can be extremely sparse, it
contains rich knowledge regarding various desired patterns like
item clustering [16] and users’ potential favorites [17].

According to the previous work [18-21, 41], a latent factor
(LF) model has been proven to address such an HiDS matrix
efficiently. However, it fails to fulfill the non-negativity
constraints. Note that an HiDS matrix in RSs is commonly
defined to be non-negative [7, 22-24]. Therefore, non-negative
features are able to better represent an HiDS matrix filled with
non-negative data and describe hidden patterns like user profile
features more precisely.

For this purpose, great efforts have been made for performing
non-negative LF analysis on HiDS matrices. The weighted non-
negative matrix factorization (WNMF) model by [25] represents
the missing values through a binary weight matrix. The non-
negative and multiplicative update (NMU) [26] algorithm is
applied to WNMF for extracting desired non-negative LFs. A
non-negative matrix completion (NMC) model by [27] adopts a
full approximation to the target matrix and then extract non-
negative LFs with the projected alternating least squares (ALS)
[28]. Hernando et al. [29] propose a non-negative matrix
factorization based on a Bayesian probabilistic model, which
associates components to each user and each item with an
understandable probabilistic meaning. Although these models
can address such an HiDS matrix, they suffer from high
computational and storage complexity since they rely on full
matrices.

For performing non-negative LF analysis on HiDS matrices
more efficiently, a single latent factor-dependent, non-negative
and multiplicative update (SLF-NMU) algorithm is proposed [7]
to extract non-negative LFs. SLF-NMU greatly alleviates the
computational and storage burden since it only relies on the
known values of an HiDS matrix rather than on the full matrix.
With the high efficient update algorithm, a non-negative latent
factor (NLF) model is further proposed [7]. Given an HiDS
matrix, NLF’s computational complexity is only linearly related
to the known values. Meanwhile, its storage complexity is linear
with the sum of its user and item counts only.

Motivations. Although an NLF model is able to represent an
HiDS matrix with low cost in both computation and storage,
there are still some bottlenecks to be addressed urgently:
a) NLF mostly relies on an objective function defined via
Euclidean distance, which is naturally a special case of α-β-
divergence [30]. Note that the objective function has vital effects
on prediction accuracy for missing values. Can an NLF model
with α-β-divergence in its objective function enhance its
representation ability for HiDS data?
b) SLF-NMU is specifically designed for an HiDS matrix with low
computational and storage complexity. However, it leads to slow
convergence [7]. In other words, NLF models usually consume
many iterations to converge, thereby resulting in considerable

time cost on large-scale datasets. Hence, how to further achieve
its fast convergence becomes highly significant.

Contributions. Aiming at addressing the above issues, this
paper innovatively proposes a generalized and fast-converging
non-negative latent factor (GFNLF) model. The main
contributions of this paper include:
a) Adopting α-β-divergence in objective function for making
NLF a generalized form, thereby enhancing its representation
ability for HiDS data;
b) Incorporating a generalized momentum method in SLF-NMU
to obtain a momentum-incorporated non-negative multiplicative
update (MNMU) algorithm, therefore greatly improving its
convergence rate;
c) Presenting algorithm design and analysis for a GFNLF model.

We conduct extensive experiments on two HiDS matrices
emerging from real RSs to justify GFNLF’s excellent performance
on predicting missing values in HiDS matrices.

The rest of this paper is organized as follows: Section 2 gives
the preliminaries. Section 3 presents our methods. Section 4
gives the experimental results. Finally, Section 5 concludes this
paper.

2 Preliminaries

2.1 Problem Statement
An HiDS matrix is commonly used for describing the certain
interactions between users and items in RSs [31], which is
defined as follows:

Definition 1: Let U and I be two large entity sets; R|U|×|I| is a
matrix where each value ru,i is connected with user u’s
preference on item i. Let RK and RU denote the known and
unknown entity sets. R is an HiDS matrix if |RK|≪|RU|.

An NLF model builds a low-rank approximation to an HiDS
matrix. Given R, it is defined as follows:

Definition 2. Given R and RK, R̂ is R’s rank-f approximation
built on RK only and R̂=XYT. Note that f denotes the rank of R̂
and f≪min{|U|,|I|}. X|U|×f and Y|I|×f denote the LF matrices
corresponding to U and I.

Note that R is commonly defined to be non-negative. For
better representing the target matrix and describing its hidden
patterns more precisely, X and Y are expected to be non-negative
to achieve an NLF model. Hence, for such purposes, an objective
measuring RK and the corresponding entry set in R̂ is desired.
With Euclidean distance, such an objective function is
formulated by:

    
 

 

 

2 2 2

, ,

,

2

2 2

, , , , ,

, 1 1 1

, ,

ˆ,

 ,

. . , , 1,2, , : 0, 0.

K

K

u i u i X YF F
u i R

f f f

u i u m m i X u m Y m i

u i R m m m

u m m i

X Y r r X Y

r x y x y

s t u U i I m f x y

  

 



   

   

  
     
   

     



   

 (1)

499

https://www.sciencedirect.com/science/article/pii/S0950705115005006
https://www.sciencedirect.com/science/article/pii/S0950705115005006

A Generalized and Fast-converging Non-negative Latent Factor Model for Predicting
User Preferences in Recommender Systems

WWW '20, April 20-24, 2020, Taipei, Taiwan

where
, , ,

1

ˆ =
f

u i u m m i

m

r x y



and denotes the values in R̂. ||·||F computes

the Frobenius norm of a matrix. The regularization coefficients
λX and λY control the regularization effect, and the terms behind
them are the regularization terms to avoid overfitting.

2.2 An NLF Model
An NLF model adopts the SLF-NMU algorithm to minimize
objective (1) for extracting non-negative LFs from the known
entity set RK. This algorithm firstly applies the additive gradient
descent (AGD) to each desired LF, resulting in the following
update rules:

 

 

 

,

, , , , , , , , ,

, , , , , , , , ,

arg min ,

ˆ ,

ˆ .

u u

i i

AGD

X Y

u m u m u m m i u i u m m i u i X u m

i I i I

m i m i m i u m u i m i u m u i Y m i

u U u U

X Y

x x y r y r x

y y x r x r y



  

  

 

 



    



   


 

 
 (2)

where ηu,m and ηm,i denote the learning rates corresponding to
xu,m and ym,i. Iu denotes the subset of I related to user u and Ui
denotes the subset of U related to item i. For ensuring xu,m and
ym,i non-negative during the updating process, SLF-NMU cancels
the negative terms by manipulating ηu,m and ηm,i. Consequently,
the update rules for xu,m and ym,i are as follows:

 
,

, ,

, ,

, , ,

, ,

, ,

, , ,

arg min ,

,
ˆ

.
ˆ

u

u

i

i

X Y

m i u i

i I

u m u m

m i u i X u u m

i I

u m u i

u U

m i m i

u m u i Y i m i

u U

SLF NMU

X Y

y r

x x
y r I x

x r

y y
x r U y






















 




 
 









 (3)

With (3), X and Y are achieved non-negative.

3 Methodology

3.1 An NLF Model with α-β-divergence
The commonly adopted Euclidean distance in NLF models is
naturally a special case of α-β-divergence [30], which is
parameterized by the two tuning parameters, α and β. Given U, I,
R and RK, the α-β-divergence measuring the dissimilarity
between RK and the corresponding entry set in R̂ for an NLF
model is defined as follows:

,

, , , ,

1
ˆ ˆ

 0, 0, 0.

u i K

u i u i u i u i

r R

d r r r r

for

     

 

 

    

   

 





 
    

  

   



 (4)

By integrating the regularization terms and non-negativity
constraints into dα-β, a generalized objective function is:

  

,

, , , ,

2 2

, ,

1 1

, ,

ˆ ˆ
1

 0, 0, 0

. . , , 1,2, , : 0, 0.

u i K

u i u i u i u i

f f
r R

X u m Y m i

m m

u m m i

r r r r

x y

for

s t u U i I m f x y

      

   



 

   

 



 

 
  

 
  
 
  
 

   

     


 

 (5)

The aforementioned analyses show that SLF-NMU algorithm
is efficient to build an NLF model on HiDS matrices. To achieve
a generalized form of SLF-NMU, this work analyzes the Karush-
Kuhn-Tucker (KKT) conditions of the objective function with a
more solid deduction.

Let Γ|U|×f and Κf×|I| be the Lagrangian multipliers
corresponding to the constraints xu,m≥0 and ym,i≥0, respectively.
Then we obtain the Lagrangian function corresponding to (5):

   T T

, , , , ,u m u m m i m i

u m i m

L tr X tr Y

x y



  

    

   
 (6)

where the operator tr(·) computes the trace of matrix.
Considering the partial derivatives of L with respect to xu,m and
ym,i, we have the following deduction based on (6):

1 1

, , , , , , , ,

, ,

1 1

, , , , , , , ,

, ,

1 1
ˆ ˆ 2 ,

1 1
ˆ ˆ 2 .

u

i

u m u i u i m i u i m i X u m u m

i Iu m u m

m i u i u i u m u i u m Y m i m i

u Um i m i

L
r r y r y x

x x

L
r r x r x y

y y

   

   


  

 


  

 

  



  



    
       

   

              





 (7)

We have the following observations from (6) and (7): a) to
achieve the local optima of L with respect to xu,m and ym,i, the
partial derivatives in (7) should be set at zero simultaneously; b)
the KKT condition of the Lagrangian function (6) is ∀u∈U, i∈I,

m∈{1, …, f}: γu,mxu,m=0, κm,iym,i=0;

With (7) and the KKT condition (6), we obtain:

1 1

, , , , , , ,

1 1

, , , , , , ,

1 1
ˆ ˆ 2 0,

1 1
ˆ ˆ 2 0.

u

i

u m u i u i m i u i m i X u m

i I

m i u i u i u m u i u m Y m i

u U

x r r y r y x

y r r x r x y

   

   


 


 

  



  



  
    
 


        




 (8)

Note that (8) can be rearranged as following equation:

1 1

, , , , , , , ,

1 1

, , , , , , , ,

1 1
ˆ ˆ2 ,

1 1
ˆ ˆ2 .

u u

i i

u m u i m i X u m u m u i u i m i

i I i I

m i u i u m Y m i m i u i u i u m

u U u U

x r y x x r r y

y r x y y r r x

   

   


 


 

  

 

  

 

  
  

 


      

 

 
 (9)

With (9), the iterative expressions of xu,m and ym,i are
formulated as follows:

500

WWW '20, April 20-24, 2020, Taipei, Taiwan Ye Yuan et al.

 
,

1

, , ,

, , 1

, , ,

1

, , ,

, , 1

, , ,

arg min ,

ˆ

,
ˆ

ˆ

.
ˆ

u

u

i

i

X Y

u i u i m i

i I

u m u m

u i m i X u u m

i I

u i u i u m

u U

m i m i

u i u m Y i m i

u U

SLF NMU

X Y

r r y

x x
r y I x

r r x

y y
r x U y

 

 

 

 











 



 














 




 
 










 (10)

which is a generalized form of SLF-NMU algorithm. It can
enhance representation ability for HiDS data by carefully
choosing the values of α and β. Note that by substituting α=β=1
into (10), we have the update rule (3) for an NLF model with
Euclidean distance [7].

3.2 A Generalized Momentum Method
As demonstrated by prior research [32], a standard momentum
method can be used to accelerate a gradient descent (GD)
algorithm significantly. The principle of a standard momentum
method determines the current update state based on the current
gradient and the latest update state. Given the decision
parameter θ and objective function (θ), a standard momentum-
based GD algorithm is defined as follows:

  
0

1 1

1

0,

,

;

n n n

n n n

a

a a

a

   

 

 





  

 

 (11)

where a0 denotes the initial state of the update velocity and is
always set at 0. The update velocity of the nth and (n-1)th
iteration is an and an-1, respectively, κ denotes the momentum
control parameter, and η denotes the learning rate. From (11), we
can see that a standard momentum-based GD algorithm depends
on gradients explicitly.

As shown in (10), SLF-NMU trains non-negative LFs
multiplicatively for keeping their non-negativity and It depends
on gradients implicitly. Therefore, a standard momentum
method is incompatible with SLF-NMU. It means we need to
adjust the standard momentum method to compatible with an
algorithm implicitly depending on gradients.

Let θ'n denote the predicted state of the decision parameter
relying on the adopted algorithm (SLF-NMU in this paper) after
the nth iteration, then we can calculate the update increment
instead of explicit gradients as follows:

1.n n n  

   (12)

Subsequently, we can formulate the update velocity in the
nth iteration based on (11):

 1 1 1 .n n n n n na a a     
    

 (13)

Based on (11) and (13), a generalized momentum method can
be obtained by reformulating a standard momentum method:

  
0

1 1

1

0,

,

.

n n n n

n n n

a

a a

a

  

 

 





  

 

 (14)

According to (14), we see that a generalized momentum
method relies on the update increment, which is obtained by the
latest state of the decision parameter and the predicted state of
the decision parameter relying on SLF-NMU. Although SLF-
NMU algorithm depends on gradients implicitly, the update
increment can still be achieved. Hence, a generalized momentum
method is compatible with SLF-NMU.

3.3 A GFNLF Model
By combining Sections 3.1 and 3.2, we further propose the
MNMU algorithm to improve the convergence rate, thereby
achieving a GFNLF model.

Let Xn-1 and Yn-1 denote the state of X and Y after the (n-1)th
iteration, and X'n and Y'n denote the predicted state after the nth
iteration with SLF-NMU, respectively. Therefore, the predicted
state of X and Y of the nth iteration is given by:

   

- -

1 1 1
,

argmin , =argmin , .
SLF NMU SLF NMU

n n n n n n
X Y

X Y X Y


    
   

 (15)

Subsequently, the update increment caused by SLF-NMU is
computed as:

 1

1

1

.
n n

n n n

n n

X X

Y Y
 







   
       

   

 (16)

Based on (12) and (13), a1 is calculated as follows:

0

0

1

1 0 1

1

,
XX

a a
Y Y


  

              (17)

where X0 and Y0 denote the initial state of X and Y, which are
randomly generated and non-negative initial defined [7]. Thus,
the update rule for X1 and Y1 is achieved based on (14):

0

0

0 01 1 1

1

1 0 0 1 1

.
XX XX X X

a
Y Y Y Y Y Y

          
                           (18)

By combining (18) with (17), we can obtain:

0 0 01 1 1

1 1

1 0 1 0 1 0

,
X X XX X X

a a
Y Y Y Y Y Y

           
                            

(19)

which keeps the same with the third equation in (16). With it,
the update increment of the 2nd iteration is given by:

   

-
2 1

2 2 1 1 2
, 2 1

, =argmin , ,
SLF NMU

X Y

X X
X Y X Y

Y Y


   
            (20)

where 2X 
and 2Y  denote the predicted states of X and Y after

the 2nd iteration with SLF-NMU. According to (14), (18) and (20),
a2 can be achieved by:

501

A Generalized and Fast-converging Non-negative Latent Factor Model for Predicting
User Preferences in Recommender Systems

WWW '20, April 20-24, 2020, Taipei, Taiwan

01 2 1

2 1 2

1 0 2 1

02 1 2 1

2

2 1 2 1 0

.

XX X X
a a

Y Y Y Y

XX X X X
a

Y Y Y Y Y

 



         
                            

          
                          (21)

In this manner, the update rules for 3rd to nth iteration are
similar to (21). Therefore, we achieve the update algorithm based
on (17) and (21) as follows:

1 1

1 1

1 2

1 2

1: ,

2 : .
n n t t

n n t t

X X
n

Y Y

X X X X
n

Y Y Y Y


 

 

    
        


         

                      (22)

Note that the parameters update should be taken with respect
to each LF with SLF-NMU. Hence, by combining (10) with (22),
we design an MNMU algorithm:

 
,

1

, , ,

0 0

, , 1
1 0 , , ,

0 0 0

1

, , ,

0 0

, , 1
1 0 , , ,

0 0 0

1

, ,

, ,

1

arg min ,

ˆ

,
ˆ

1:
ˆ

;
ˆ

ˆ

2 :

u

u

i

i

X Y

u i u i m i

i I

u m u m

MNMU

u i m i X u u m

i I

u i u i u m

u U

m i m i

u i u m Y i m i

u U

u i u i

n

u m u m

n n

X Y

r r y

x x
r y I x

n
r r x

y y
r x U y

r r

x x

n

 

 

 

 

 











 







 












 



 

 
 














,

1 1

, ,1
1 2, , ,

1 1 1

1

, , ,

1 1

, , , ,1
1 1 2, , ,

1 1 1

,
ˆ

ˆ

.
ˆ

u

u

i

i

m i

ni I

u m u m

n nu i m i X u u m

n n ni I

u i u i u m

n nu U

m i m i m i m i

n n n nu i u m Y i m i

n n nu U

y

x x
r y I x

r r x

y y y y
r x U y

 

 

 







 

 
 

  



 

 
  

  














 
     





        























(23)

Note that the teams
, ,

1 2

u m u m

n n

x x
 

 
 

  and
, ,

1 2

m i m i

n n

y y
 

 
 

  in (23)
are probably negative since there is no guarantee that each
single LF is non-decreasing during the whole training process.
Hence, we truncate these two terms to zeroes if they turn into be
negative, resulting in the following update algorithm:

 
,

1

, , ,

0 0

, , 1
1 0 , , ,

0 0 0

1

, , ,

0 0

, , 1
1 0 , , ,

0 0 0

1

, ,

, ,

1

arg min ,

ˆ

,
ˆ

1:
ˆ

;
ˆ

ˆ

2 :

u

u

i

i

X Y

u i u i m i

i I

u m u m

MNMU

u i m i X u u m

i I

u i u i u m

u U

m i m i

u i u m Y i m i

u U

u i u i

n

u m u m

n n

X Y

r r y

x x
r y I x

n
r r x

y y
r x U y

r r

x x

n

 

 

 

 

 











 







 












 



 

 
 














,

1 1

, ,1
1 2, , ,

1 1 1

1

, , ,

1 1

, , , ,1
1 1 2, , ,

1 1 1

max 0, ,
ˆ

ˆ

max 0,
ˆ

u

u

i

i

m i

ni I

u m u m

n nu i m i X u u m

n n ni I

u i u i u m

n nu U

m i m i m i m i

n n n nu i u m Y i m i

n n nu U

y

x x
r y I x

r r x

y y y y
r x U y

 

 

 







 

 
 

  



 

 
  

  

  
   

   

  
    

   








.
















 

 
 
 
 
 

 (24)

With (24), we design the MNMU algorithm for a generalized
and fast-converging non-negative latent factor (GFNLF) model.
Note that when α=β=1 and κ=0, GFNLF is equal to NLF [7].

3.4 Algorithm Design and Analysis
According to the above analyses, we develop the Algorithm
GFNLF. As shown in Algorithm GFNLF, some auxiliary matrices
are employed. For instance, four auxiliary matrices are employed
for X, i.e., XA, XB, XC and XD. Among them, XA and XB are used
for caching the training increment on each instance ru,i∈RK, and
XC and XD are used for caching the intermediate results of the
(n-1)th and (n-2)th iterations. Similar settings are applied to Y.

Algorithm: GFNLF

As given in Algorithm GFNLF, we analyze the computational

cost. Then, we can formulate the computational complexity as
follows:

 .

GFNLF K

K

T n U I f R f

n R f
 (25)

502

WWW '20, April 20-24, 2020, Taipei, Taiwan Ye Yuan et al.

Note that in (25) we adopt the condition |RK|≫max{|U|,|I|} to
omit the lower-order-terms to achieve the final result reasonably.
GFNLF’s computational complexity is linear with |RK| since n and
f are both positive constants. Meanwhile, GFNLF only uses ten
matrices, i.e., X, XA, XB, XC, XD, Y, YA, YB, YC and YD, along
with U, I and RK. The storage cost only takes:

5 5 6 6

 5 6 .

GFNLF K

K

S U f I f R U I

U I f R U I
 (26)

Based on the above inferences, GFNLF is highly efficient in
both computation and storage.

4 Experimental Results

4.1 General Settings
Evaluation Protocol. For industrial applications, one major
motivation for processing an HiDS matrix is to predict its
missing values for implementing the full relationship mapping
among involved entities. Owing to its popularity and usefulness,
we adopt it as the evaluation protocol in our experiments. It is
commonly measured by root mean squared error (RMSE) [33]:

 ,

2

, ,
ˆ | |,

u i T

u i u i T

r R

RMSE r r R

 (27)

where RT denotes the test set and is disjoint with RK, r̂u,i denotes
the generated prediction for the testing instance ru,i∈RT, which
simulates the missing value at the uth row and ith column of a
target HiDS matrix, and |∙| calculates the cardinality of a given
set, respectively. All experiments are conducted on a Tablet with
a 2..4GHz Xeon E5-2680 V4 CPU and 128GB RAM, and
implemented in JAVA SE 8U172.

Datasets. Two public HiDS matrices collected by real RSs
currently used are included in our experiments. Hence, results
on them are highly representative and useful. Their details are as
follows:
a) D1: MovieLens 20M. It is collected by the MovieLens system
[34] maintained by the GroupLens research team. It has
20,000,263 entries in (0.5, 5), from 138,493 users on 26,744 movies.
Its data density is 0.54% only.
b) D2: Dating Agency. It is collected by an online dating
website LibimSeTi [35], with 17,359,346 known entries in the
range of (1, 10), from 135,359 users on 168,791 profiles. Its data
density is 0.076% only

Note that we adopt the 80%-20% train-test settings and five-
fold cross-validation on all datasets. The training process
terminates if: a) the iteration count reaches a threshold, i.e. 1000;
and b) the gap of RMSE in two consecutive iterations becomes
smaller than 5 10-6.

Model Settings. For obtaining objective and precise results,
we adopt the following settings: 1) Setting the regularization
coefficients λ=λX=λY and fixing the LF dimension f=20; 2)
Initializing X and Y with the same randomly-generated and non-
negative arrays to eliminate the impact caused by random initial

guesses; 3) Repeating each set of experiments for 5 times and
taking the average of the experimental outputs as their final
results.

4.2 Effects of α and β
As discussed in Section 3, GFNLF’s objective function relies on
α-β-divergence. Hence, α and β are the key parameters for
deciding GFNLF’s performance. In this set of experiments, we
validate the effects of α and β without momentum (κ=0) first. We
fix λ=0.05 and the tested scales for α and β are both (0.2, 3.0).
Figure 1 depicts the lowest RMSE of GFNLF for each value of α.
Table 1 shows the optimal RMSE of GFNLF. Figure 2 shows
GFNLF’s time cost per iteration as α and β vary. From them, we
have the following finding:

Figure 1: Lowest RMSE of GFNLF for each value of α. For
each value of α, we record the lowest RMSE as β varies.

Figure 2: Time cost per iteration as α and β vary. Color
indicates the magnitude.

Table 1: Optimal RMSE relying on α and β.

a) As depicted in Figure 1, GFNLF’s RMSE for missing data in
HiDS matrices is closely connected with the value of α and β. For
each value of α, the lowest RMSE is different respecting to β. Of
cause, the situation is similar if we take the value of β as the
horizontal axis. There is always an optimal case of α and β to
enable GFNLF to achieve the optimal RMSE on each dataset. For
instance, on D1, GFNLF achieves the optimal RMSE with α=1.2

503

A Generalized and Fast-converging Non-negative Latent Factor Model for Predicting
User Preferences in Recommender Systems

WWW '20, April 20-24, 2020, Taipei, Taiwan

and β=0.8. On D2, the optimal case is α=1.0 and β=0.8. Moreover,
the RMSE increases significantly as α is relatively small or large.
b) As discussed in Section 3, we turn GFNLF into NLF by making
α=β=1. As shown in Table 1, α=β=1 is not the optimal case,
which corresponds to the frequently adopted Euclidean distance.
For instance, on D1, GFNLF achieves the optimal RMSE at 0.7839
with α=1.2 and β=0.8. However, the lowest RMSE is 0.7876 with
α=β=1. The gaps of RMSE are 0.47%. Furthermore, the gap even
reaches 2.50% on D2. These results indicate that the frequently
adopted Euclidean distance may not be the best choice for NLF
to achieve the highest prediction accuracy for missing data.
c) As shown in Figure 2, the time cost per iteration is stable as α
and β vary. From (24), the update rules of LFs depend on the
same operation, which results in nearly the same constant time.
However, we also observe slight fluctuations of time cost per
iteration as α and β vary. The main reason is raising an arbitrary
real number to the power of different α and β.

4.3 Effects of λ
As shown in (24), GFNLF’s performance also relies on the
regularization coefficients λ=λX=λY. In this set of experiments,
we fix α and β with the optimal case summarized in Table 1.
Meanwhile, the tested scale for λ is (0.01, 0.15). Figure 3 depicts
RMSE as λ varies. From them, we have the following findings:
a) As shown in Figure 3, it is necessary to choose regularizing
coefficients carefully to ensure high prediction accuracy. With
too small or too big values of λ, RMSE increases. For instance, as
shown in Figure 3(a), on D1, the RMSE with λ=0.01, 0.03, 0.05,
0.07, 0.09, 0.11, 0.13 and 0.15 is 0.8113, 0.7898, 0.7839, 0.7901,
0.8009, 0.8136, 0.8253 and 0.8372, respectively. The gap between
the highest RMSE and lowest RMSE is 6.36%. The difference in
RMSE is quite significant.
b) The optimal value of λ is data-dependent. For instance, the
optimal λ for D1 is 0.05. On D2, the lowest RMSE is achieved
with λ=0.07. Note that the tuning process of λ is a tedious task,
which can be addressed via offline tuning, or adopting empirical
values. Of course, the ideal way is to pick up the optimal
regularizing coefficients automatically. This clearly requires our
future work.

Figure 3: Lowest RMSE as λ varies.

4.4 Effects of κ
Although GFNLF has an outstanding performance on prediction
accuracy according to Sections 4.2 and 4.3, it usually consumes

many iterations to achieve the lowest RMSE without momentum
(κ=0). Figure 4 shows the training process without momentum.

Figure 4: Training process without momentum.

As shown in Figure 4, it consumes 743 iterations on D1 and
810 iterations on D2 to achieve the lowest RMSE. As discussed in
Section 1, the main reason is that SLF-NMU leads to slow
convergence. It results in considerable time cost on large-scale
datasets which is unacceptable for industrial applications like
online RSs. Hence, we need to improve its convergence rate.

In this part, we mainly discuss the effects of momentum on
convergence rate. Figure 5 depicts the training process as κ
varies. Table 2 summarizes iterations and lowest RMSE as κ
varies. The tested scale is (0, 1.4). From them, we have the
following findings:

Figure 5: Training process as κ varies.

a) With appropriate κ, the generalized momentum method
obviously improves its convergence rate without prediction
accuracy loss, even a slight improvement. As recorded in Figure
5(a) and Table 2, GFNLF consumes 493 iterations with κ=1.0 to
achieve the lowest RMSE at 0.7814 on D1. However, it consumes
743 iterations to achieve the lowest RMSE at 0.7839 with κ=0.
The iterations decreases at 33.64% without prediction accuracy
loss. The similar situation is more significant on D2. For instance,
GFNLF consumes 195 iterations with κ=1.2, only 24.07% of 810
iterations with κ=0.
b) GFNLF’s training process is sensitive to κ. It is very important
to choose the appropriate κ. Small κ eliminates the momentum
effects, while large κ makes a learning algorithm overshoot a
local optimum. This assertion is supported by Figure 5 and Table
2. For instance, on D2, GFNLF consumes 790 iterations to achieve
the RMSE at 1.8476 with κ=0.2. In contrast, with κ=1.2, GFNLF
only consumes 195 iterations to achieve the RMSE at 1.8374. The

504

WWW '20, April 20-24, 2020, Taipei, Taiwan Ye Yuan et al.

iterations decrease at 75.31% while the prediction accuracy
increases at 0.55%. As κ grows too large, GFNLF suffers
overshooting, which results in significant accuracy loss. For
instance, on D2, GFNLF achieves the lowest RMSE at 1.8617 with
κ=1.4, 1.30% higher than 1.8374 with κ=1.2. On D1, GFNLF is
even impossible to converge with κ=1.2 and κ=1.4.

Table 2: Iterations and lowest RMSE as κ varies.

4.5 Comparison with State-of-the-art Models
In this part of experiments, we compare GFNLF with the most
widely used state-of-the-art models in terms of computational
efficiency and prediction accuracy. The details of compared
models are summarized in Table 3.

To ensure a fair comparison, we adopt the following settings
in terms of the hyperparameters in each model:
a) For M1 and M2, we select the optimal hyperparameters
discussed in Section 4;
b) For M1-M3, we set LF dimension f=20. For M4 and M5, we set
their hidden unit at the optimal value 500 following [36, 37];
c) The regularization coefficient is also vital for M3-M5 [7, 36,
37]. Hence, we first draw a grid search with respect to them to
seek for their optimal values on each dataset.

Table 3: Details of compared models.

Figure 6 depicts the lowest RMSE of compared models. Their

time cost per iteration is depicted in Figure 7. Table 4 records the

total time cost of compared models to achieve the lowest RMSE.
From them, we have the following findings:
1) Effectiveness evaluation
a) M2’s prediction accuracy is competitive to its peers. On D2,
M2 is able to achieve the best performance in prediction
accuracy. For instance, as shown in Figure 6(b), M2 has the
lowest RMSE at 1.8374, 0.58% lower than 1.8482 by M1, 1.44%
lower than 1.8752 by M3, 0.39% lower than 1.8447 by M4, and
0.26% lower than 1.8493 by M5. The situation is different on D1.
M2 still outperforms M1, M3 and M4. Only M5 achieves higher
prediction accuracy than M2. The gap is only 0.03%. These
results indicate that M2 shows excellent performance in
prediction accuracy for missing values.
b) M1 and M2 obviously outperform M3 owing to its objective
function being α-β-divergence. The phenomenon indicates that
adopting α-β-divergence in NLF is able to enhance
representation ability for HiDS data by carefully choosing the
values of α and β. Moreover, compared M1 with M2, M2
outperforms M1. For instance, M1 achieves the lowest RMSE at
0.7839 on D1 and 1.8482 on D2. In contrast, M2 achieves the
lowest RMSE at 0.7814 and 1.8374, respectively. This
phenomenon indicates that the prediction accuracy is slightly
improved with appropriate κ.

Figure 6: Lowest RMSE of compared model.

2) Efficiency evaluation
a) The time cost per iteration of M1, M2 and M3 is almost the
same level. For instance, as shown in Figure 7(a), on D1, the time
cost per iteration by M1, M2, and M3 is 6.4593, 6.4856, and 6.4601
seconds, respectively. By comparing M1 and M2, M2’s time cost
per iteration is slightly higher than that of M1. The main reason
is that the latter consumes more constant time in addressing the
momentum term. We can make the similar conclusion on D2. It
demonstrates that MNUM can improve the convergence rate
without significantly increasing the time cost per iteration.
b) M4 and M5’s time cost per iteration are much higher than its
peers do due to their deep neural network (DNN)-based learning
strategy. They need to cost many operations about matrix
manipulation and updating weights and biases by back-
propagation. For instance, as shown in Figure 7(a), the time cost
per iteration of M4 is 74.6492 seconds, about 11.5 times of M1-
M3 do. Without GPU acceleration in our experiment, it is indeed
expensive to train a DNN-based LF model on a large-scale HiDS
matrix.

505

A Generalized and Fast-converging Non-negative Latent Factor Model for Predicting
User Preferences in Recommender Systems

WWW '20, April 20-24, 2020, Taipei, Taiwan

c) M2’s computational efficiency is significantly higher than that
of its peers. As recorded in Table 4, M2 obviously consumes less
total time cost to achieve its lowest RMSE. For instance, on D1,
M2 consumes 3197.3 seconds to achieve its lowest RMSE. This is
66.62% of 4799.3 seconds by M1, 64.44% of 4961.3 seconds by M3,
6.48% of 49343.1 seconds by M4, and 7.15% of 44712.8 seconds by
M5. Note that although M2’s time cost per iteration is slightly
higher than that of M1 and M3 as shown in Figure 7, M2’s
iteration is obviously less due to adopting the generalized
momentum method.

Figure 7: Time cost per iteration of compared models.

Table 4: Total time cost of compared models (second).

4.6 Summary
Based on the experimental results, we summarize that:
a) By carefully selecting appropriate α and β, GFNLF
outperforms NLF with Euclidean distance on prediction accuracy;
b) The momentum-incorporated non-negative multiplicative
update (MNMU) algorithm is able to significantly improve the
convergence rate without accuracy loss;
c) When compared with state-of-the-art models, GFNLF can
achieve obviously higher computational efficiency as well as
competitive prediction accuracy for missing values in HiDS
matrices.

5 Conclusion
High-dimensional and sparse matrices (HiDS) matrices with
non-negativity constraints are commonly encountered in RSs.
High values in an HiDS matrix usually denote strong user-item
preferences. NLF can address such matrices efficiently. However,
NLF mostly adopts Euclidean distance for its objective function,
which is naturally a special case of α-β-divergence. Moreover, it
frequently suffers slow convergence. To address this issue, this
paper innovatively proposes a generalized and fast-converging
non-negative latent factor (GFNLF) model. We first turn NLF
into a generalized form by adopting α-β-divergence to enhance
its representation ability for HiDS data. Subsequently, we design
a momentum-based single latent factor-dependent, non-negative

and multiplicative update (MNMU) to achieve its fast
convergence. Empirical studies show that GFNLF outperforms
state-of-the-art models in both computational efficiency and
prediction accuracy for missing data of an HiDS matrix. Hence,
it is useful for RSs to desire highly efficient, accurate and non-
negative latent factor analysis.

However, the performance of GFNLF depends largely on
carefully tuning hyperparameters (α, β and κ). In this work, we
pre-tune their values, but the tuning process is an inefficient
task. Consequently, making them self-adaptation is an essential
issue. According to prior research [38], evolutionary computing-
based frameworks may be useful for adaptive picking up the
optimal hyperparameters. Of cause, great efforts are needed for
redirecting such frameworks to GFNLF. We plan to address such
issues in the future.

ACKNOWLEDGMENTS
This work is supported in part by the National Natural Science
Foundation of China under grants 61772493, 61902370, 61602434
and 61702475, in part by the Natural Science Foundation of
Chongqing (China) under grants cstc2019jcyj-msxmX0578 and
cstc2019jcyjjqX0013, and in part by the Pioneer Hundred Talents
Program of Chinese Academy of Sciences.

REFERENCES
[1] Paul Resnick and Hal R. Varian. 1997. Recommender systems.

Communications of the ACM 40, 3 (1997), 56-59.
[2] Chao Wang, Qi Liu, Runze Wu, Enhong Chen, Chuanren Liu, Xunpeng

Huang, and Zhenya Huang. 2018. Confidence-Aware Matrix Factorization for
Recommender Systems. In Proceedings of the 32nd AAAI Conference on
Artificial Intelligence (AAAI). 434-442.

[3] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings Of the 26th
International Conference on World Wide Web (WWW). 173-182.

[4] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. 2009.
Scalable Collaborative Filtering Approaches for Large Recommender Systems.
Journal of Machine Learning Research 10, 623-656.

[5] Tianqiao Liu, Zhiwei Wang, Jiliang Tang, Songfan Yang, Gale Yan Huang, and
Zitao Liu. 2019. Recommender Systems with Heterogeneous Side Information.
In Proceedings Of the 28th International Conference on World Wide Web
(WWW). 3027-3033.

[6] Cen Chen, Peilin Zhao, Longfei Li, Jun Zhou, Xiaolong Li, and Minghui Qiu.
2017. Locally connected deep learning framework for industrial-scale
recommender systems. In Proceedings Of the 26th International Conference
on World Wide Web (WWW). 769-770.

[7] Xin Luo, Mengchu Zhou, Shuai Li, Zhuhong You, Yunni Xia, and Qingsheng
Zhu. 2016. A Nonnegative Latent Factor Model for Large-Scale Sparse
Matrices in Recommender Systems via Alternating Direction Method. IEEE
Transactions on Neural Networks and Learning Systems 27, 3 (2016), 579-592.

[8] Trong Dinh Thac Do and Longbing Cao. 2018. Coupled poisson factorization
integrated with user/item metadata for modeling popular and sparse ratings in
scalable recommendation. In Proceedings of the 32nd AAAI Conference on
Artificial Intelligence (AAAI). 2918-2925.

[9] Jing Lin, Weike Pan, and Zhong Ming. 2018. MF-DMPC: Matrix Factorization
with Dual Multiclass Preference Context for Rating Prediction. In Proceedings
of the International Conference on Web Services (ICWS). 337-349.

[10] James Chambua, Zhendong Niu, and Yifan Zhu. 2019. User preferences
prediction approach based on embedded deep summaries. Expert Systems
with Applications 132, 87-98.

[11] Yixin Cao, Xiang Wang, Xiangnan He, Zikun Hu, and Tat-Seng Chua. 2019.
Unifying Knowledge Graph Learning and Recommendation: Towards a Better
Understanding of User Preferences. In Proceedings of the 28th International
Conference on World Wide Web (WWW). 151-161.

[12] Qiang Liu, Shu Wu, Liang Wang. 2017. DeepStyle: Learning user preferences
for visual recommendation. In Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval
(SIGIR). 841-844.

506

WWW '20, April 20-24, 2020, Taipei, Taiwan Ye Yuan et al.

[13] Xin Luo, MengChu Zhou, Yunni Xia, Qingsheng Zhu, Ahmed Chiheb Ammari,
and Ahmed Alabdulwahab. 2016. Generating Highly Accurate Predictions for
Missing QoS Data via Aggregating Nonnegative Latent Factor Models. IEEE
Transactions on Neural Networks and Learning Systems 27, 3 (2016), 524-537.

[14] Xin Dong, Lei Yu, Zhonghuo Wu, Yuxia Sun, Lingfeng Yuan, and Fangxi
Zhang. 2017. A hybrid collaborative filtering model with deep structure for
recommender systems. In Proceedings of the 31st AAAI Conference on
Artificial Intelligence (AAAI). 1309-1315.

[15] Hao Ma, Irwin King, and Michael R. Lyu. 2009. Learning to recommend with
social trust ensemble. in Proceedings of the 32nd International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR).
203-210.

[16] Tavi Nathanson, Ephrat Bitton, and Kenneth Y. Goldberg. 2007. Eigentaste 5.0:
constant-time adaptability in a recommender system using item clustering. In
Proceedings of the ACM conference on Recommender systems (RecSys). 149-
152.

[17] Dimitrios Rafailidis and Alexandros Nanopoulos. 2015. Modeling users
preference dynamics and side information in recommender systems. IEEE
Transactions on Systems, Man, and Cybernetics 46, 6 (2015), 782-792.

[18] Guangneng Hu, Xinyu Dai, Fengyu Qiu, Rui Xia, Tao Li, Shujian Huang, and
Jiajun Chen. 2018. Collaborative filtering with topic and social latent factors
incorporating implicit feedback. ACM Transactions on Knowledge Discovery
from Data 12, 2 (2018), 1-23.

[19] Yehuda Koren, Robert M. Bell, and Chris Volinsky. 2009. Matrix Factorization
Techniques for Recommender Systems. IEEE Computer 42, 8 (2009), 30-37.

[20] Ye Yuan, Xin Luo, and Mingsheng Shang. 2018. Effects of preprocessing and
training biases in latent factor models for recommender systems.
Neurocomputing 275, 2019-2030.

[21] Zhiyong Cheng, Ying Ding, Lei Zhu, and Mohan S. Kankanhalli. 2018. Aspect-
aware latent factor model: Rating prediction with ratings and reviews. In
Proceedings Of the 27th International Conference on World Wide Web
(WWW). 639-648.

[22] Guibing Guo, Jie Zhang, and Neil Yorke-Smith. 2015. TrustSVD: collaborative
filtering with both the explicit and implicit influence of user trust and of item
ratings. In Proceedings of the 29th AAAI Conference on Artificial Intelligence
(AAAI). 123-129.

[23] Hao Li, Keqin Li, Jiyao An, Weihua Zheng, and Kenli Li. 2019. An efficient
manifold regularized sparse non-negative matrix factorization model for large-
scale recommender systems on GPUs. Information Sciences 496, 464-484.

[24] Jing Lin, Weike Pan, and Zhong Ming. 2018. MF-DMPC: Matrix Factorization
with Dual Multiclass Preference Context for Rating Prediction. In Proceedings
of International Conference on Web Services (ICWS). 337-349.

[25] Sheng Zhang, Weihong Wang, James Ford, and Fillia Makedon. 2006. Learning
from Incomplete Ratings Using Non-negative Matrix Factorization. In
Proceedings of the International Conference on Data Mining (ICDM). 549-553.

[26] Daniel D. Lee and H. Sebastian Seung. 1999. Learning the parts of objects by
non-negative matrix factorization. Nature 401, 788-791.

[27] Yangyang Xu, Wotao Yin, Zaiwen Wen, and Yin Zhang. 2012. An alternating
direction algorithm for matrix completion with nonnegative factors. Frontiers
of Mathematics in China 7, 2 (2012), 365-384.

[28] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In Proceedings of the 8th International Conference
on Data Mining (ICDM). 263-272.

[29] Antonio Hernando, Jesús Bobadilla, and Fernando Ortega. 2016. A non
negative matrix factorization for collaborative filtering recommender systems
based on a Bayesian probabilistic model. Knowledge-Based Systems 97, 188-
202.

[30] Andrzej Cichocki, Sergio Cruces, and Shun-ichi Amari. 2011. Generalized
alpha-beta divergences and their application to robust nonnegative matrix
factorization. Entropy 13, 1 (2011), 134-170.

[31] Jin Shang and Mingxuan Sun. 2018. Local Low-Rank Hawkes Processes for
Temporal User-Item Interactions. In Proceedings of the International
Conference on Data Mining (ICDM). 27-436.

[32] Stephen Boyd and Lieven Vandenberghe. 2009. Convex Optimization.
Cambridge University Press.

[33] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John Riedl.
2004. Evaluating collaborative filtering recommender systems. ACM
Transactions on Information Systems 22, 1 (2004), 5-53.

[34] Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L. Herlocker, Lee
R. Gordon, and John Riedl. 1997. GroupLens: applying collaborative filtering
to Usenet news. Communications of the ACM 40, 3 (1997), 77-87.

[35] Lukas Brozovsky and Vaclav Petricek. 2007. Recommender system for online
dating service. eprint arXiv:cs/0703042.

[36] Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. 2015.
AutoRec: Autoencoders Meet Collaborative Filtering. In Proceedings of the
24th International Conference on World Wide Web. 111-112.

[37] Qingxian Wang, Binbin Peng, Xiaoyu Shi, Tianqi Shang, and Mingsheng
Shang. 2019. DCCR: Deep Collaborative Conjunctive Recommender for Rating
Prediction. IEEE Access 7, 60186-60198.

[38] Pablo Ribalta Lorenzo, Jakub Nalepa, Michal Kawulok, Luciano Sánchez
Ramos, and José Ranilla Pastor. 2017. Particle swarm optimization for hyper-
parameter selection in deep neural networks. In Proceedings of the ACM
International Conference on Genetic and Evolutionary Computation
(GECCO). 481-488.

[39] Shuai Li, Alexandros Karatzoglou, and Claudio Gentile. 2016. Collaborative
filtering bandits. In Proceedings of the 39th International conference on
Research and Development in Information Retrieval (SIGIR). 539-548.

[40] Claudio Gentile, Shuai Li, Purushottam Kar, Alexandros Karatzoglou,
Giovanni Zappella, and Evans Etrue. 2017. On Context-Dependent Clustering
of Bandits. In Proceedings of the 34th International Conference on Machine
Learning (ICML). 1253-1262.

[41] Antoine Bordes, Nicolas Usunier, Alberto García Durán, Jason Weston, and
Oksana Yakhnenko. 2013. Translating embeddings for modeling multi-
relational data. In Proceedings of advances in neural information processing
systems (NIPS). 2787-2795.

507

